

ASCENDIS

Advisory Services on Climate, Energy and Development Issues

Overview of costs of sustainable energy technologies

Energy production: on-grid, mini-grid and off-grid power generation and supply and heat applications

J.H.A. VAN DEN AKKER

March 2017

LIST OF ABBREVIATIONS

ARE	Alliance for Rural Electrification
BOS	balance of system
СНР	combined heat and power
CSH	concentrating solar power
CSP	concentrating solar heat
CAPEX	capital expenditures
EIA	US Energy Information Administration
EJ	exajoule
ESMAP	Energy Sector Management Assistance Programme (World Bank)
EUR	euro
GW	gigawatt
GWh	gigawatt-hour
IEA	International Energy Agency
IMF	International Monetary Fund
IPCC	Intergovernmental Panel for Climate Change
IRENA	International Renewable Energy Agency
kW	kilowatt
kWh	kilowatt-hour
LCOE	levelised cost of energy
MSW	municipal solid waste
MVA	megavolt-ampere
MW	megawatt
MWh	megawatt-hour
0&M	operation and maintenance
OPEX	operational expenditures
PV	photovoltaic
R&D	research and development
RE	renewable energy
RET	renewable energy technology
REN21	Renewable Energy Policy Network for the 21 st Century
SHS	solar home system
STS	solar thermal system
TWh	terawatt-hour
UN	United Nations
TAF SE4All	European Union Technical Assistance Facility for Sustainable Energy for All
UN	United Nations
USA	United States of America
USD	US dollar
yr	year
Wp	peak-Watt
Wth	thermal Watt
WEC	World Energy Council
WEO	World Energy Outlook
WWEA	World Wind Energy Association

TABLE OF CONTENTS

LIST O	OF ABBREVIATIONS	2
TABLE	E OF CONTENTS	3
LIST O	OF TABLES, FIGURES AND BOXES	4
1.	INTRODUCTION	6
1.1	BACKGROUND	6
1.2	METHODOLOGICAL ISSUES IN COST COMPARISONS	6
1.3	WORLD ENERGY PRODUCTION AND CONSUMPTION	8
2.	ELECTRICITY GENERATION	11
2.1	Hydropower	11
2.2	SOLAR PHOTOVOLTAICS	13
2.3	WIND POWER	16
2.4	CONCENTRATED SOLAR POWER	18
2.5	GEOTHERMAL ENERGY	
2.6	UCEAN ENERGY	
2.7	BIOMASS FOR POWER	
2.8	FOSSIL FUELS AND NUCLEAR	24
3.	COST COMPARISON OF POWER GENERATION TECHNOLOGIES	25
3.1	UTILITY-SCALE RENEWABLE ENERGY TECHNOLOGIES	25
3.2	COSTS OF ELECTRIFICATION: GRID EXTENSION AND MINI-GRIDS	31
3.2.1	Grid extension	
3.2.2	Decentralised grids (mini-grids)	
3.2.3	Stand-alone systems	
3.3	COST COMPARISON OF ELECTRIFICATION OPTIONS	
4.	HEATING AND COOLING APPLICATIONS; FUELS	
4.1	HEAT APPLICATIONS (FOR PRODUCTIVE AND RESIDENTIAL USES)	
4.2	BIOMASS HEAT AND FUELS	
4.2.1	Modern bio-heat applications	41
4.2.2	Liquid fuels	
4.2.3	Traditional uses of bioenergy and modern methods	
4.3	SOLAR THERMAL HEAT AND COOLING	
4.4	SOLAR WATER PUMPING	
4.5	SOLAR DESALINATION	
ANNEX	X A. TERMS OF REFERENCE OF THE EVALUATION	
ANNEX	X B. REFERENCES AND BIBLIOGRAPHY	53

LIST OF TABLES, FIGURES AND BOXES

FIGURE 1	ESTIMATED RE SHARE IN GLOBAL FINAL ENERGY CONSUMPTION IN 2014	9
FIGURE 2	ESTIMATED RE SHARE IN GLOBAL ELECTRICITY PRODUCTION IN 2015	9
FIGURE 3	SHARE OF BIOMASS IN TOTAL FINAL ENERGY CONSUMPTION (2014)	9
FIGURE 4	WORLD ELECTRICITY ACCESS AND LACK OF ACCESS (2013)	.10
FIGURE 5	WORLD CLEAN COOKING ACCESS AND LACK OF ACCESS (2013)	.10
FIGURE 6	BIOMASS COOKING TECHNOLOGY USE PER REGION	.10
FIGURE 7	THE LCOE OF SMALL HYDRO FOR A RANGE OF PROJECTS IN DEVELOPING COUNTRIES	.12
FIGURE 8	TOTAL INSTALLED COST PER REGION/COUNTRY	.12
FIGURE 9	COST BREAKDOWN OF CONVENTIONAL PV SYSTEM IN USA (2010)	.14
FIGURE 10	TRENDS IN COSTS OF SOLAR PV AND MARKET PENETRATION	.14
FIGURE 11	TRENDS IN COSTS OF SOLAR PV AND MARKET PENETRATION	. 15
FIGURE 12	INSTALLED WIND POWER CAPACITY	.17
FIGURE 13	LCOE OF COMMISSIONED AND PROPOSED WIND PROJECTS (> 5 MW) IN 2013/14 PER REGION	.17
FIGURE 14	INSTALLED COST OF COMMISSIONED AND PROPOSED WIND PROJECTS (> 5 MW) PER REGION	. 18
FIGURE 15	INSTALLED CAPACITY COST AND LEVELISED COST OF GEOTHERMAL ENERGY (2014)	. 19
FIGURE 16	TOTAL INSTALLED COSTS OF BIOMASS-FIRED POWER GENERATION, 2011-14	.21
FIGURE 17	CAPACITY FACTORS OF BIOMASS-FIRED SYSTEMS PER COUNTRY/REGION	.22
FIGURE 18	LCOE OF BIOMASS-FIRED SYSTEMS PER COUNTRY/REGION	.22
FIGURE 19	INSTALLED CAPITAL COST RANGES BY BIO-POWER TECHNOLOGY	.23
FIGURE 20	COST RANGES FOR BIO-POWER TECHNOLOGIES	.23
FIGURE 21	SHARE OF FUEL COST IN BIO-POWER GENERATION FORT HIGH AND LOW FEEDSTOCK PRICES	.23
FIGURE 22	LEVELISED COST AND INSTALLED COSTS OF ELECTRICITY FROM RENEWABLE ENERGY (2013-14)	. 25
FIGURE 23	LEVELISED COST OF ENERGY TECHNOLOGIES (2013)	.26
FIGURE 24	COST ADVANTAGE OF PV HYBRID (DIESEL-BATTERY) SYSTEMS VS. DIESEL GENERATORS	.34
FIGURE 25	EXAMPLES, COST EFFECTIVENESS OF RE HYBRID SYSTEMS VS. DIESEL AND VS. GRID EXTENSION	.35
FIGURE 26	NORPLAN STUDY: COST COMPETITIVENESS OF RURAL ELECTRIFICATION SOLUTIONS	.37
FIGURE 27	LEVELISED COST OF ELECTRICITY FOR ON-GRID AND OFF-GRID TECHNOLOGIES IN SUB-SAHARAN AFRICA	.38
FIGURE 28	GLOBAL BIOENERGY DEMAND (2014)	. 39
FIGURE 29	GLOBAL PRODUCTION AND COSTS OF LIQUID BIOFUELS	.42
FIGURE 30	COMPARISON OF COST OF COOKING FUELS	.43
FIGURE 31	LCOE ESTIMATES FOR DESALINATION TECHNOLOGIES FOR ISLANDS	.48

Box 1	COST METRICS
Box 2	CONVERSION AND USES OF BIOMASS FOR ENERGY
Box 3	GUJARAT, INDIA; SOLAR PV PUMPS IN SALT PRODUCTION

TABLE 1	ESTIMATES OF INVESTMENT AND LEVELISED COST OF HYDROPOWER	11
TABLE 2	ESTIMATES OF INVESTMENT AND LEVELISED COST OF SOLAR PV	13
TABLE 3	ESTIMATES OF INVESTMENT AND LEVELISED COST OF WIND POWER	16
TABLE 4	ESTIMATES OF INVESTMENT AND LEVELISED COST OF HYDROPOWER	20
TABLE 5	ESTIMATES OF INVESTMENT AND LEVELISED COST OF BIOMASS-FIRED POWER	21
TABLE 6	LEVELISED COST OF COAL, GAS AND NUCLEAR	24
TABLE 7	ESTIMATED LCOE (AVERAGE OF REGIONAL VALUES IN USA) FOR GENERATION PLANTS	27
TABLE 8	TYPICAL COST OF POWER GENERATION IN GOOD AFRICAN CONDITIONS (2010)	27
TABLE 9	INVESTMENT COSTS AND LCOE OF RE TECHNOLOGIES FOR POWER SUPPLY	28
TABLE 10	CHARACTERISTICS OF GRID-CONNECTED, MINI-GRID AND INDIVIDUAL (STAND-ALONE) SYSTEMS	31
TABLE 11	ELECTRICITY INFRASTRUCTURE COST	32
TABLE 12	TRANSMISSION LINES	32
TABLE 13	COST PER CONNECTION OF DISTRIBUTION NETWORKS	33
TABLE 14	REFERENCE COST OF MINI-GRID SYSTEMS	33
TABLE 15	COSTS OF STAND-ALONE PV SYSTEMS	35
TABLE 16	THE ENERGY LADDER AND ENERGY ACCESS	36
TABLE 17	CAPITAL COSTS AND LCOE OF BIOMASS FOR HEATING, SPACE HEATING AND COOLING	41
TABLE 18	COSTS OF BIOGAS IN SMALL-SCALE APPLICATIONS	44
TABLE 19	COSTS OF SOLAR THERMAL TECHNOLOGY FOR RESIDENTIAL APPLICATIONS	46
TABLE 20	COSTS OF SOLAR THERMAL TECHNOLOGY FOR INDUSTRIAL PROCESSES	46
TABLE 21	COSTS OF SMALL-HOLDER IRRIGATION	47
TABLE 21	YEARS TO BREAKEVEN OVER THE OPERATING LIFE OF PV AND DIESEL PUMPS, NAMIBIA	47
TABLE 21	COMPARATIVE COSTS FOR RENEWABLE DESALINATION	48
TABLE 22	2005 CONVENTIONAL POWER TECHNOLOGY CAPITAL COST (USD/KWH)	49
TABLE 23	2005 RENEWABLE POWER TECHNOLOGY CAPITAL COST (USD/KW)	51

1. INTRODUCTION

1.1 Background

There are many possible technologies available for energy generation, based on fossil fuels, or using regenerable energy (biomass) or renewable sources of energy (solar, wind, hydro, etc.). Nonetheless, it is often asked 'what is the price/cost of this technology' as means of selecting one technology over the other, and the above-given description already indicates there are often too many differences and characteristics to give an easy answer. Often policy-makers and decision-makers make requests for information on energy technology costs to be put in background papers, presentations, project proposals and for activity programming. The purpose of this report is to provide an overview of the different investment cost and annual cost of operation and maintenance of sustainable energy technologies.

At first look, comparing energy production and end use technologies seems straightforward; you can obtain a technology at a certain price. However, technologies differ in the way power is generated and the scale the technology can be used. They differ in energy resource variability and availability, specific local and natural conditions, patterns of use of the energy produced and technology maturity. There are big differences in cost of the technology and fuels and costs of operation and maintenance, and that are not static but fluctuate or change over time. Even for one technology, costs can differ per subtype or per model, depending on its application and in which country it will be bought and used.

1.2 Methodological issues in cost comparisons

Thus, in practice making such comparisons is quite complicated:

- Data provided may reflect the writer's bias towards a technology, e.g. by reporting the lower cost range of a preferred technology against the higher cost range of the disfavoured technology
- Data found in literature can diverge widely; the author of this report had once to report on costs of small hydropower to find out that these ranged in various reports (from UN, World Bank, etc.) ranged from USD 1500 to 7000 per kW installed capacity. These differences can be explained by:
 - Economic of scale, i.e. cost generally decrease (slightly) per installed capacity);
 - o Large fluctuations in energy resource availability and/or
 - o Large power demand peaks and low load utilization in off-peak hours;
 - Non-equipment cost. The lower range often gives the bare technology cost, while towards the upper range, project organisation and preparation cost are included. Costs do not include equipment only. For example, installing a hydropower station for rural electrification has the cost of organising, planning and designing the station, getting authorities' approvals and permits, engaging the local community, which requires the (expensive) support of consultants or companies. If covered by development assistance, these costs are often absorbed by the assistance project and may not be fully not reported;
- Many renewable energy technologies have high investment cost, but relatively low operating cost, while
 many fossil fuel alternatives have low initial investment but high annual cost (basically fuel cost and
 overhaul expenses). One methodology is to compare lifecycle cost; you divide the initial investment
 over the technologies' lifetime and use a certain discount rate to arrive at the levelised cost of energy
 (LCOE, see Box 1). However, it can be questionable what the actual lifetime is and what discount rate

needs to be used. Also, a system may consist of technologies with different lifetimes. In a solar PV system with battery backup the panels should last 20 years, while the battery may go flat after 5-7 years. Cost of batteries can be quite substantial; in other words, the cost of battery replacement should be factored in;

- Levelised cost reported are not always compatible due to difference in resource availability. For example, one can image that the LCOE of solar installation in Atacama desert in Chile will be different from the Tierra del Fuego one.
- Capital expenditure (CAPEX) cost break down in three components: 1) development and preparation, 2) equipment, 3) balance of plant or system. Balance of system or plants include cost components such as civil works, construction, wiring, etc., each with their own useful or technical lifetime;
- Another crucial factor is the actual energy consumption in comparison with the potential energy generation capacity, expressed by the load utilization factor (see Box 1). This works in two ways, looking at a) supply and b) demand:
 - On the supply side, some renewable technologies can be quite variable, notably solar, wind, run-ofthe-river hydro and biomass, depending on how the wind blows, the sun shines and the harvest of biomass was successful. Variability is on a daily, monthly, seasonal scale which needs in-depth investigation with time-series energy resource analysis which has a cost and is not always clearly mentioned;
 - On the demand side, there is wide difference between grid-connected and off-grid technologies. To illustrate the difference, the example of hydropower. If the river flows and all the power generated can be fed into the grid, the load utilization factor can be impressive; however, in case of small grids the load utilization factor is often not more than 30%; the installation's capacity may be designed to meet the evening hours peak in the town (when households switch on their lights), but much of the capacity will be idle for the rest of the day; the economics can be improved when the peak is shaved, by combining with efficiency measures while stimulating other (productive) uses during day time
- Technologies can be difficult to compare when taxes are taken into account. Some countries tax technologies in a hefty way; import tax 15-20%; sales tax 20%, etc. Other authorities give tax benefits or other incentives that can be of the same order of magnitude. Costs per country can also differ as costs of inputs (labour cost, fuel cost, interest rates) can differ widely. Comparing one figure from one report from one country with another often is difficult, unless such (dis)incentive cost details are known;
- Costs are often given for a specific year. This gives three problems, a) the exchange of a currency can be fluctuating and if converted at a non-average rate can give biased results in terms of costs; b) there is inflation, so when comparing 2010 figures with a 2015 report inflation factors should be factored in (normally the average of the IMF-reported consumer's price index is a guideline); c) costs of technology and their operation may have changed. Sometimes in reports lifetime of fossil fuel generation costs are reported using a fuel price which happened to be at the peak; only to find out that next cycle it was only half of the reported price, making the cost analysis very questionable; d) cost of some renewable energy technologies (in particular solar PV) have a tendency of rapid decrease over time (so that the latest data should be used where possible).
- By varying slightly with discount rate, financing cost, depreciation, tax assumptions, and CAPEX and OPEX estimates in Excel spreadsheet analysis, it is often not too difficult to describe any technology more favourably by changing the initial parameters, while drawing a more expensive picture of the technology your report-funding agency may not favour. Related to this, incentive regimes have often spurred technologies by lowering the O&M cost and/or CAPEX cost, but also in this way discouraging the longer-term innovative development with lower costs of technology.

In conclusion, giving one sole figure, cost per kW or cost per kWh, to characterize the price of an energy production or end-use technology can be deceptive. Despite the above-mentioned limitations, some reputed organization have delivered quite some credible assessments and provide summary of costs that are basically the basis of the assessments in this reports, such as IRENA, World Bank, World Energy Council, REN21, and UN organizations (UNDP, UNIDO, UNEP).

Box 1 Cost metrics

Cost of energy technologies include equipment, organization and installation, operating and maintenance. Financing expenditures are part of the costs. However, in comparing technologies financial costs should in principle be left out of the initial cost assessment. The idea is that costs of technologies are compared on their merit (benefits vs costs). Often the financial sector may have a bias towards new or innovative technologies as opposed to the proven ones. If projects or technologies need funding, criteria are often applied that disfavour these technologies.

Four cost metrics are frequently referred to in this report:

- Investment cost or capital expenditure (CAPEX), which includes the total cost of project development, installation and construction, including equipment cost;
- Operating expenditures (OPEX), are the annual (variable and fixed) expenditures for operation, administration, maintenance and, if applicable, fuel cost
- Capacity factor or load (utilization) factor is the ratio of the net energy production in a given year that could have been generated at full-capacity operation (i.e. at 8,760 hours). Capacity is not full used due to non-availability (scheduled maintenance and overhaul work), resource limitations (variability and unavailability at certain time per day or seasonally) and low demand (when capacity is idle);
- Levelised cost of energy (or electricity) LCOE: the value of lifecycle costs (e.g. in USD/MWh) of producing a unit of energy (MWh) of a specific technology. One can also say the LCOE is the price that must be received per unit of output to reach a financial return (break-even) over its lifetime

LCO	DE =	sum of costs over lifetime sum of electrical energy produced over lifetime	$= \frac{\sum_{t=1}^{n} \frac{I_t + M_t + F_t}{(1+r)^t}}{\sum_{t=1}^{n} \frac{E_t}{(1+r)^t}}$
	I _t	: investment expenditures in the year t	
	M_t	: operations and maintenance expenditures in the year t	
	Ft	: fuel expenditures in the year t	
	Et	: electrical energy generated in the year t	
	r	: discount rate (often taken as 10%)	

- *r* : discount rate (often taken as 10%)
- **n** : expected lifetime of system or power station

Notes:

- Some caution must be taken when using formulas for the levelised cost, as they often embody unseen assumptions, neglect effects like taxes, and may be specified in real or nominal levelised cost.
- Other versions of the above formula do not discount the electricity (or energy) stream

1.3 World energy production and consumption

As of 2014, renewable energy provided an estimated 19.2% of global final energy consumption. Of this total share, traditional biomass, used primarily for cooking and heating in remote and rural areas of developing countries, accounted for about 8.9%, and modern renewables (not including traditional biomass) increased their share slightly over 2013 to approximately 10.3% (REN21, 2016).

Figure 1 Estimated RE share in global final energy consumption in 2014

Source: REN21 (2016)

ASCENDIS (2017)

2. ELECTRICITY GENERATION

2.1 Hydropower

Hydropower accounts for one-fifth of today's power supply, but less than 10% of the estimated technical potential has been utilised (WEO, 2014). Hydropower, excluding pumped storage, is currently the largest renewable power generation source, with a global installed capacity of 1,064 GW in 2015 (REN21, 2016), generating about 3,940 TWh. There is a big difference in cost between small and large scale hydro. But the investment costs differ also due to the type of the plant, if they are run-of-river plants or if reservoirs are required. There is no good definition of what is large, medium and small-sized, which may differ per country. IRENA (2012) mentions: large hydro: > 100 MW (feeding into grid), medium hydro: 20-100 MW (almost always fed into a grid), small hydro: (1-20 MW, usually grid-connected), mini-hydro: 100 kW-1 MW (stand-alone, mini-grid or grid-connected), micro hydro: 5-100 kW (usually stand alone or small-grid in remote area) and pico-hydro (below 5 kW)

Table 1 Estimates of investment and revensed cost of nyaropower						
2010	Installed cost	O&M cost	Capacity factor	LCOE		
	(USD/kW)	(%, installed cost)	(%)	(2010 USD/kWh)		
Large hydro	1050-7650	2-2.5	25-90	0.02-0.19		
Small hydro	1300-8000	1-4	20-95	0.02-0.27		
Refurbish/upgrade	500-1000	1-6				
Taken from IRENA RETS	(2012): Cost Analysis Ser	ries Vol.1 3/5: Hydropowe	er. Levelised cost assume	10% cost of capital and		
lifetimes of 40 years. M	ini and small hydro					
	Installed cost	O&M cost	Capacity factor	LCOE		
	(USD/kW)	(USD/MWh/yr)	(%)	(USD/kWh)		
Large hydro	1590-4150	20,000-62,000	20-75%	0.024-0.302		
Small hydro	1400-3680 15,000-85,000		23-80%	0.019-0.314		
Source: WEC (2013)						
2013-14	Installed cost	O&M cost	Capacity factor	LCOE		
	(USD/kW)	(%, installed cost)	(%)	(USD/kWh)		
Medium-large	1050-7650			0.02-0.20		
Small hydro	1000-4000	1-4%		0.02-0.10		
Mini (< 1 MW)	3400-10000			0.27		
Source; adapted from IRENA (2015)						
2013-14	Installed co	ost (EUR/kW)				
Large (> 100 MW)	100	0-2000				
Small (~ 10 MW)	180	0-3000				
Mini (~ 1 MW)	250	0-4000				
Micro (~ 50 kW)	350	0-5500				
Source: ELLTAE for SEAAII						

Table 1 Estimates of investment and levelised cost of hydropower

Hydropower plants can be connected to the national or main grid system. Hydropower plants not connected to the national grids are classified as mini-grid (or micro-grid) systems. Cost estimates reported can differ widely, based on capacity factors (there is huge variation from 30 to 85%, and difference between grid-connected and mini-grid systems), cost included in the estimate (e.g. only technology cost or also project and community organization costs), cost of components in a country (cement, steel). There has been little systematic collection and cost of hydro tend to be very site-specific; investment costs quoted in studies can range from USD 1,000 to 7,500 per kW (IRENA 2012, Fig.4.1). IRENA (2015) gives USD 450-3,500/MW as typical cost with LCOE varying between USD 0.02-0.15/kWh (2014 figures).

Figure 8 Total installed cost per region/country

A typical hydro generating station can be described under two main headings: civil works and electro/mechanical equipment. The largest share of installed costs for large hydropower plant is typically taken up by civil works for the construction of the hydropower plant (such us dam, tunnels, canal and construction of powerhouse, etc.). The electro-mechanical equipment costs tend to be higher in small-scale projects, contributing from 18% to as much as 50% of total cost. For projects in remote or difficult to access locations, infrastructure costs can dominate total costs (IRENA, 2012). The design of hydropower schemes is highly complex and time consuming. It requires extensive investigations and surveys in many technical domains including geology, seismology, topography, hydrology, geotechnical, construction material engineering, electro-mechanical and electrical engineering and much more. The implementation (up to commissioning of operations) of a hydropower scheme project depends of course on its dimension; for a totally new project, the duration from identification to commissioning can span from 5 years to more than 12 years (TAF SE4All, 2015/16).

Due to the maturity and relative simplicity of the technology the economics can be very attractive if the right location can be found. Hydropower levelised cost of energy (LCOEs) are usually cost-competitive without financial support, especially for adequately sited large hydro. Average LCOE in OECD countries is about USD 0.09-0.10/kWh for large hydro and USD 0.10-0.15 for small hydro, while in many developing countries (where the economic potential has not been fully exploited) the LCOE ranges USD 0.02-0.11/kWh (IRENA, 2015). Small hydropower projects have an average LCOE of 0.05/kWh and can be a very attractive electrification option, providing low-cost electricity to remote communities or for the grid. However, the main barrier to development is the very high capital cost of building the installation. Other barriers to investment include low seasonal river flows and elevated levels of water use (WEC, 2014). Hydropower is a mature technology, with limited cost reduction potential in most settings. However, significant low-cost potential remains to be exploited in many countries outside the countries of the OECD.

2.2 Solar photovoltaics

Lond Londition of my content and revenue cost of solar 1 y	Table 2	Estimates of investment	and levelised of	cost of solar PV
--	---------	--------------------------------	------------------	------------------

	Inst	alled PV system cos	Levelised cost of energy			
		(USD/kW)	USD/kWh)			
Installed PV	Utility scale	Residential	Residential	Utility scale	Residential	Residential
system cost		(w/o battery)	(w/ battery)		(w/o battery)	(w/ battery)
2010/11	2640-5000	3070-5800	4000-6000	0.20-0.59	0.25.0.70	0.36-0.71
2014/15	1300-5400	1860-5100	3800-4300	0.08-0.42	0.14-0.47	0.31-0.52
2030	1060-1380	1500-1800				

Source large and small hydro: IRENA RETs (2012): Cost Analysis Series Vol.1 4/5: Solar Photovoltaics and IRENA (2015). LCOE assumes a 10% cost of capital. Efficiency (residential): 14% (2010/11, c-Si PV) and 8-12% (utility; amorphous/thin film) and 17% and 11-17% in 2015 respectively).

Components	Life (yrs)	Cost per kW installed (in USD)			
		Utility-scale	Roof-top	Small	Small
			residential	(w/o battery)	(w/ battery)
PV modules	20-25	660-850	660-850	730-850	730-850
Inverters	5-10	230-750	270-800	270-800	270-800
Wiring; electrical		240	240	240	240
Battery bank					1200-1500
Structure/mount		300	550	300	300
Installation, site		650	130-220	150-200	200-600
preparation, etc.					
Total cost		2000-2600	1900-2800	1600-2400	2900-4300
LCOE (USD/kWh)		0.10-0.30	0.14-0.46		

Own analysis, based on IRENA (2012), IRENA (2015), TAF SE4All (2015 and 2015/16). Assumed annual energy production is 800-2000 kWh per m2 per year, depending on latitude. In terms of size installed cost of PV range from USD 0.09-0.16 (> 100 MW), to USD 0.11-0.18 (10-100 MW), USD 0.13-0.20 (1-10 MW), USD 0.15-0.23 (10 kW-1 MW, ground) and USD 0.17-0.25 (1 kW-1 MW, roof)

PV plants	Installed cost	O&M cost	Efficiency (%)	LCOE		
	(USD/kW)	(USD/kW/yr)		(2010 USD/kWh)		
w/o tracking	1050-2660	11-60	11-20%	0.08-0.44		
w/ tracking	2370-6210	40-126	16-29%	0.09-0.45		

WEC (2013), based on data from China, India, Spain, USA, Australia, Germany and Japan. W/ tracking for W. Europe and USA only

Photovoltaic systems (PV) are made of PV modules. The smallest unit in a PV module is the solar cell, which convert the light into electricity. PV is one of the fastest growing renewable energy technologies and it is expected that it will play a significant role in the future global electricity generation mix. Large-scale

Figure 10 Trends in costs of solar PV and market penetration

Source:

Global Market Outlook for Solar Power 2015-2019", http://www.solarpowereurope.org; Global Market Outlook for Photovoltaics 2014-2018"; http://www.epia.org., IEA, 2014; Technology Roadmap: Solar Photovoltaic Energy

grid PV technology can be used on a variety of scales. Utility PV plants (with a capacity of several MW) are designed for the supply of power into the electricity grid. Roof-top solar PV systems are often associated with buildings: either integrated into them, mounted on top of the roof or nearby on auxiliary structures (if the building itself cannot use all energy produced by PV, the owner need an agreement or PPA if he wants to sell excess energy to the grid). Solar home systems (battery operated solar system on a

house, clinic or school) as well as pico-PV systems (e.g. solar lanterns) have experienced significant development in recent years for remote rural areas far from the grid. Solar water pumps can be competitive diesel vs. pumps when off-grid, depending on load, depth and water storage needs.

Large part in the cost of a PV system are the PV modules (about 30-50%), followed by balance of system cost (BOS, 20-70%) and in, stand-alone systems, the battery (usually lead-acid).

ASCENDIS (2017)

ASCENDIS (2017)

The cost of PV modules has dropped significantly. Solar PV module prices in 2014 were around 75% lower than their levels at the end of 2009. Between 2010 and 2014 the total installed costs of utility-scale PV systems have fallen by 29% to 65%, depending on the region; the global average LCOE of utility-scale solar PV has fallen by half in four years, while the LCOE of residential systems in selected countries has fallen by between 42% and 64% since 2008 (IRENA, 2015). The most competitive utility-scale solar PV projects are now regularly delivering electricity for just USD 0.08 per kilowatt-hour (kWh) without financial support. With today's very low solar PV module prices, the greatest source of future cost reduction potential is in the balance of system costs, notably the soft costs, and through reduced finance costs. The solar PV market was an estimated 227 GW in 2015 (of which 50 GW added in 2015; REN21, 2016).

2.3 Wind power

Wind power technologies are differentiated based on the axis of the wind turbine – vertical or horizontal – and their location – onshore or offshore. For the utility-scale market, horizontal-axis turbines are used exclusively. Between 2000 and 2010 the global capacity of onshore and offshore wind increased at about 30% per year, reaching 200 GW installed in 2010 and 433 GW in 2015 (WEC, 2014; IRENA, 2015; WWEA, 2015; REN21, 2016), generating 800 TWh in 2014. China has the largest share of installed wind capacity, 29% at the end of 2013. It is followed by the United States (19%), Germany (11%), Spain (7%) and India (6%).

Largest cost component is the wind turbine, about 50-60% usually on average. Prices of wind turbine have dropped since the 1980s), but fluctuated over the past decade. For example, for turbines (> 1 MW) prices

	Installed PV system cost		Levelised cost of energy		
	(USD)/kW)	USD/	/kWh)	
•	On-shore	Off-shore	On-shore	Off-shore	
2010/11	1330-3060	3700-5600	0.06-0.13	0.10-0.32	
2014	1280-2290	2700-5070	0.06-0.12	0.10-0.21	
2010/12	1080-2450	4290-6080	0.047-0.136	0.147-0.367	
			(cap.factor 15-45%)	(cap.factor 32-42%)	

Table 3 Estimates of investment and levelised cost of wind power

Source: IRENA (2015), above and WEC (2013), below

O&M cost is typically 1.5-3% of capital cost (CAPEX) and 25-30% of LCOE or about USD 0.02-0.03/kWh for on-shore and USD 0.037-0.054/kWh for off-shore. Data on O&M is often not consistently reported, making comparisons difficult. WEC (2013) gives OPEX range of USD 10.7-28.8/kW/yr (on-shore) and USD 100-160/kW/yr for off-shore.

Capital cost breakdown (2010/11 data)	On-shore	Off-shore
Wind turbines	64-84%	30-50%
Civil works and construction	4-16%	15-25%
Grid connection	9-14%	15-30%
Planning and development	4-10%	8-30%

IRENA (2015) and IRENA (2012), Vol. 5.5 Wind Power. Wind turbines: production, transportation and installation; Civil works: installation, foundation, site preparation and access road. Grid connection: cabling, substations and buildings. Planning and development: engineering, licensing, consultancy, permits

Wind turbine cost	Installed cost
	(EUR/kW)
Wind turbines (> 1 MW)	1500 (1060-2450)
Wind turbines (250 kW-1 MW)	2850 (2300-3400)
Medium (50 kW-500 kW0	3000 (2500-3500)
Small (1.5-50 kW)	5000 (3000-7000)
TAF SE4II (2015).	

increased from about USD 755/MW in 2000/02 to USD 1465 in 2007, peaking at around USD 1720/MW in 2009 and dropping to about USD 1400/MW in 2012 in USA; in China wind turbine prices were USD 1040/MW in 2007, dropping to about USD 630-680 in 2011-14. These trends reflect growing demand for turbines, fluctuating cost of commodities and increasing sophistication of wind turbine design. IRENA (2012) mentions in its table 5.3 that cost of installed onshore wind may drop over 10%-30% over 2011-2030.

Figure 13 LCOE of commissioned and proposed wind projects (> 5 MW) in 2013/14 per region

ASCENDIS (2017)

Overview of costs of sustainable energy technologies

Figure 14 Installed cost of commissioned and proposed wind projects (> 5 MW) in 2010/14 per region

2.4 Concentrated solar power

Concentrating solar power (CSP) is a power generation technology that uses mirrors to concentrate the sun's rays and, in most of today's CSP systems, to heat a fluid that is used to produce steam. Parabolic trough collectors (PTC) dominate the total installed capacity of CSP plants at about 4.0 GW installed capacity in 2012 (WEC 2013). Installed capacity of power and heliostat technology was about 0.8 GW. Spain and the USA play host to the most important CSP markets (4.8 MW in 2014, up from 1.8 MW in 2000), but China and India, as well as Morocco and South Africa, are both developing and financing a number of plants.

Cost quoted in 2010/13 vary between USD 3420-7670/MW for systems without storage and (at capacity factors 24-28%) LCOE of USD 0.20-0.50/kWh USD 0.123-0.248 in China/India)¹. CSP can integrate low-cost thermal energy storage in order to provide dispatchable electricity to the grid and capture peak market prices. Investment costs with storage in 2010/13 were about USD 6000-11,000/MW and (at capacity factor 28-42%) LCOE of USD 0.16-0.47/kWh. The weighted average LCOE of CSP by region varied from a low of USD 0.20 in Asia to a high of USD 0.25/kWh in Europe in recent years, with the LCOE of individual projects varying significantly depending on location and level of storage. However, as costs are falling, recent projects are being built with LCOEs of USD 0.17/kWh, and power purchase agreements are being signed at even lower values where low-cost financing is available. Future cost reductions can be expected if deployment accelerates, but policy uncertainty is hurting growth prospects.

¹ Assuming a 25-year economic lifetime

2.5 Geothermal energy

Geothermal energy holds enormous potential for power generation and other applications drawn sustainably from a renewable resource. World primary energy consumption was 560 EJ in 2012 (or 155,505 TWh; GEA, 2014), final consumption was 104,426 TWh, of which 18,608 TWh electricity. The IPCC Special Report estimates that the global geothermal potential is in the same order or magnitude of about 118 EJ per year (to 3km depth) up to 1109 EJ/yr (up to 10 km depth) as annual global energy

Figure 15 Installed capacity cost and levelised cost of geothermal energy (2014)

demand. For comparison, the (REN21 2016) output in 2015 of geothermal energy was rather modest, 75 TWh as electricity and 75 TWh as heat. Currently, installed capacity is about 13.2 GW and another 12.5 MW is under development by various countries in over 700 sites.

Geothermal energy is traditionally extracted from in areas near the edges of tectonic plates where hightemperature hydrothermal resources are available near the surface Where the hydrothermal resource is available, geothermal electricity is generally cost effective and competitive, typically providing baseload generation, thus not requiring load-balancing equipment. Like other renewable energy sources, initial investment cost is high (about USD 1080/1800 to 6000/8000/kW), but levelised cost (USD 0.04-0.14/kWh up to USD 0.28/kWh) can be low. Between 2007 and 2014, the LCOE of geothermal varied from as low as USD 0.04/kWh for second-stage development of a field to as high as USD 0.14/kWh for greenfield developments. Plants require no fuel and O&M cost are low and can range from USD 0.01-0.04/kWh; IPCC, 2011, chapter 4; and IEA, 2011; IRENA, 2015; WEC, 2013). Total installed costs appear to have stabilised, but Projects that are planned for the period 2015 to 2020 expect to be able to reduce installed costs with about 7% by 2020 due to better drilling technology and higher capacity factors (from 85-95% on average).

2.6 Ocean energy

Ocean energy (also referred to as marine energy) holds enormous potential for power generation and other applications drawn sustainably from a renewable resource. By the end of 2014, installed capacity of all ocean energy technologies was only 530 MW, of which the bulk (500 MW) in two tidal range facilities (in Brittany, France, and Sihwa, Rep. of Korea; REN21, 2016). This is indicative for both the technological maturity *of tidal range power* (the only ocean energy technology that can be classified with 'high' technology readiness; other technology more in the prototype stage) and also its strong limitations (only a few applications due to high capital cost, limitation to specific locations, and the environmental consequences, similar to the dams in hydropower). A commercial market for ocean energy technologies has not really developed yet. *Wave and tidal stream energy technologies* are considered on the next level in terms of technology readiness (i.e. 'moderate', see Annex 2) and have attracted some commercial interest with a small number of pilot grid-connected devices installed. A few *OTEC (ocean thermal energy conversion)* demonstration plants have been installed, while ocean current and salinity gradient technology have remained in the research and development stage.

Most data come from a few pilot projects and thus have a large margin of error, but given the precommercial or pilot stage, ocean technology have high cost (LCOE) that are intrinsic to their early development stage (see Table 4).

Table 4 Estimates of investment and levelised cost of hydropower										
	Design	Investment cost	O&M cost	Capacity	LCOE					
	life	CAPEX \$/kW	OPEX \$/kW	factor	(\$/MWh)					
	(years)			(%)						
Tidal range	40	4,500-5,000	100	22.5-28.5						
Tidal current	20									
- first pilots (0.3-10 MW)		5,100-14,600	140-1,160	26-40	260-1050					
- first commercial 2020-30 (3-90 MW)		3,300-5,600	90-400	35-45	130-280					
Wave	20									
- first pilots (1-3 MW)		4,000-18,100	140-1,500	25-40	284-1058					
- first commercial 2020-30 (2-75 MW)		2,700-9,100	70-380	35-40	120-470					
OTEC	20									
- first pilots (0.1-5 MW)		12,000-45,000	800-1,440	97	150-280					
- first commercial 2020-30 (100 MW)		7,000-13,000	340-620							
Compiled from IRENA (2014), table 1 and IE	PCC (2012), ta	ble 6.3: WFC (2013)								

2.7 **Biomass for power**

Bioenergy draws on a wide range of potential feedstock materials: forestry and agricultural residues and wastes of many sorts, as well as material grown specifically for energy purposes. The raw materials can be converted to heat for use in buildings and industry, to electricity, or into gaseous or liquid fuels, which can be used in transport, for example. This degree of flexibility is unique amongst the different forms of renewable energy.

Figure 16 Total installed costs of biomass-fired power generation, 2011-14

Bio-power capacity was an estimated 106.4 GW in 2015 (up from 68 GW in 2010), and generation 464 TWh (REN21 2015). The leading countries for electricity generation from biomass in 2015 were the United States (69 TWh), Germany (50 TWh), China (48 TWh), Brazil (40 TWh) and Japan (36 TWh) followed by the United Kingdom and India.

Table 5 Estimates of investment and levelised cost of biomass-fired power										
Bio-power technology and feedstock	Typical plant	Conversion	Capacity	Capital cost	LCOE					
	size	efficiency	factor	(USD/kW)	(USD/kWh)					
Gasification	1-40 MW	30-40%	40-80%	2050-5500	0.06-0.24					
	0.2-5 MW				0.08-0.12					
Bio-methanation (anaerobic digestion)										
- Large	1-20 MW	25-40%	50-90%	500-6500	0.06-0.19					
- Small				600-900	-					
- Landfill gas				1900-2200	0.04-0.095					
Bio-power from solid biomass	1-200 MW	25-35%	50-90%	800-5400	0.05-0.20					
- Co-firing with coal				200-800	0.04-0.12					
 With MSW (municipal solid waste) 			60-90%		0.034-0.095					
Compiled from IRENA (2014), table 1 and IF	PCC (2011), table	6.3; WEC (2013).	Fixed O&M cost	are typically 2-6%	of CAPEX, while					
variable O&M cost are around USD 0.005/k	Wh.									

ASCENDIS (2017)

Figure 17 Capacity factors of biomass-fired systems per country/region

Source: IRENA (2015), Figure 8.7. Technically, it is possible for biomass-fired electricity plants to achieve capacity factors of 85% to 95%. In practice, most plants do not regularly operate at these levels. Feedstocks may be a constraint on capacity factors in cases where systems relying on agricultural residues may not have year-round access to low-cost feedstock and buying alternative feedstocks might make plant operation uneconomical

Overview of costs of sustainable energy technologies

Figure 19 Installed capital cost ranges by bio-power technology

Source: IRENA (2012), Vol. 1/5 (biomass), Fig. 5.3, 6.2 and 6.3

Figure 20 Cost ranges for bio-power technologies

Figure 21 Share of fuel cost in bio-power generation fort high and low feedstock prices

The wide range of biomass-fired power generation technologies and feedstock costs translates into a broad range of observed LCOE of biomass-fired electricity, as presented in the Table 5 and Figure 18. Most biomass power generation technologies are mature and biomass and can be competitive at agricultural and forestry sites where low-cost feedstocks and handling facilities are available to keep feedstock and capital costs low. Where this is not the case, or where these feedstocks need to be supplemented by additional feedstocks (e.g. outside seasonal harvesting periods), then competitive supply chains for feedstocks are essential for making biomass-fired power generation economically sound (IRENA, 2015). Feedstock costs can be zero for some wastes, including those produced onsite at industrial installations, such as black liquor at pulp and paper mills or bagasse at sugar mills.

Biomass can provide dispatchable baseload electricity at very competitive costs. The regional or country weighted LCOE ranged from a low of USD 0.04/kWh in India and USD 0.05/kWh in China to USD 0.085/kWh in Europe and North America over the last ten years. Individual projects typically generate electricity that costs between USD 0.03 and USD 0.14/kW. But higher values exist, up to USD 0.25/kWh, particularly for waste incineration projects in the OECD where the primary purpose of the process is not electricity generation, but waste disposal (IRENA, 2015).

2.8 Fossil fuels and nuclear

The economics of conventional thermal generation projects differ substantially from those of intermittent, low marginal cost renewables such as solar and wind. Regionally, the largest differentiator between conventional coal and gas projects tends to be the cost of input fuels, which are highly localised. For nuclear projects upfront capital costs are high enough that fuel becomes less of a cost differentiator. The importance of fuel costs is shared by biomass facilities, but not by most other renewable types as once a renewable project is up and running the marginal cost of generation is minimal (WEC, 2013).

	-			
	Capital cost (CAPEX)	OPEX	Capacity factor	LCOE
	(USD/MW)	(USD/kW/yr)	(%)	(USD/kWh)
Coal	660-3700	30.6-76.5	80-98%	0.035-0.172
Gas (combined-cycle turbines)	760-1510	14.6-58	78-83%	0.061-0.148
Nuclear	3570-6520	56-123	85-92%	0.091-0.147

Table 6	Levelised	cost of	coal,	gas	and	nuclear
---------	-----------	---------	-------	-----	-----	---------

Compiled from WEC (2013). The ranges vary per region and prices of fuels and do not necessarily reflect maximum or minimum vales

3. COST COMPARISON OF POWER GENERATION TECHNOLOGIES

3.1 Utility-scale renewable energy technologies

Biomass for power, hydropower, geothermal and onshore wind can all now provide electricity competitively compared to fossil fuel-fired power generation. In particular, the levelised cost of electricity (LCOE) of solar PV has halved between 2010 and 2014, so that solar photovoltaics (PV) is also

increasingly competitive at the utility scale. Typically, the more mature technologies of onshore wind and solar PV are accepted as relatively low risk and gain more favourable financing terms. The story of increased competitiveness, however, remains a nuanced one. For technologies that are widely deployed across the globe, such as onshore wind, crystalline silicon PV and hydropower, there are significant cost variations between regions. Also, a key component in the LCOE of renewable technologies is the cost of finance and this varies by technology and location. The financing of offshore wind projects however is still highly project specific, depending on the distance from shore, construction technology used and experience of the developer (WEC, 2013; IRENA, 2016).

Justo s Typical cost of	power generation	i ili goou i	III Iculi c		(10)
	Investment cost	Capacity factor	Fuel cost	Electricity price ¹	Transmission and distribution cost
	(USD/kW)		(USD/GJ)	(US cents/ kWh)	(US cents/kWh)
Solar PV grid connected (85%PR)	3,000-4,000	0.2		24-37	3-7
Solar PV no battery	3,500-4,500	0.2		30-47	
Solar PV with battery (2.4 kWh/kW) ²	5,000-6,000	0.2		45-65	
CSP grld connected no storage (90% PR)	5,500 ³	0.3-0.4		35-47	3-7
CSP grld connected 8 hrs storage (90% PR)	8,500	0.5-0.7		31-43	3-7
Large hydropower (above 10 MW)	1,000-2,000	0.5		4.5-9	3-7
Small hydropower (0.1 to 10 MW)	2,000-4,000	0.5		9-18	1-2
Pico hydropower Below 0.1 MW	4,000-8,000	0.5		18-36	1
Onshore wind (2 MW)	1,7504	0.25-0.40		10-16	3-7
Onshore wind (0.2 MW)	3,000	0.2-0.25		27-34	3-7
Blomass (bagasse boller)	2,500	0.5	0.5-3	12-15	3-7
Blomass co-combustion In coal-fired power plant	1,250	0.75	1-5	5-9	3-7
Geothermal (high quality resource)	5,000⁵	0.8		14	3-7

Table 8 Typical cost of power generation in good African conditions (2010)

¹ Assumes 15% annuity plus 5% O&M. Excludes inflation and taxes/subsidies.

² Given a 20% capacity factor, a 1 kW panel produces 1,740 kWh. If half of the electricity is stored, evenly divided over the days of the year, 2.4 kWh of daily storage is needed. If battery discharge is limited to 25%, 10 kWh of battery storage capacity is needed. For deep-cycling lead acid batteries this costs USD 1,500.

Source: IRENA (2012), Prospect for the African Power Sector

Table 7Estimated LCOE (average of regional values in USA) for generation plants
entering service in 2022

	15 \$/MWh) fo	r Plants Entering S	ervice in 2022			
				Variable		
	Capacity	Levelized		0&M		Total
	Factor	Capital	Fixed	(including	Transmission	System
Plant Type	(%)	Cost	0&M	fuel)	Investment	LCOE
Dispatchable Technologies						
Advanced Coal with CCS ²	85	97.2	9.2	31.9	1.2	139.5
Natural Gas-fired						
Conventional Combined Cycle	87	13.9	1.4	41.5	1.2	58.1
Advanced Combined Cycle	87	15.8	1.3	38.9	1.2	57.2
Advanced CC with CCS	87	29.2	4.3	50.1	1.2	84.8
Conventional Combustion Turbine	30	40.9	6.5	59.9	3.4	110.8
Advanced Combustion Turbine	30	25.8	2.5	63.0	3.4	94.7
Advanced Nuclear	90	78.0	12.4	11.3	1.1	102.8
Geothermal	91	30.9	12.6	0.0	1.4	45.0
Biomass	83	44.9	14.9	35.0	1.2	96.1
Non-Dispatchable Technologies						
Wind	40	48.5	13.2	0.0	2.8	64.5
Wind – Offshore	45	134.0	19.3	0.0	4.8	158.1
Solar PV ³	25	70.7	9.9	0.0	4.1	84.7
Solar Thermal	20	186.6	43.3	0.0	6.0	235.9
Hydroelectric ⁴	58	57.5	3.6	4.9	1.9	67.8

Source: EIA Energy Outlook (2016), LCOE data

ASCENDIS (2017)

Table 9 Investment costs and LCOE of RE technologies for power supply

	Levelised Cost of Energy -> USD/kWh 0	0.05	0.10	0.15	0.20	0.25	
DIOFFOWLN	Africa	_	•				
	Asia					-	
	Central America and the Caribbean						
	Eurasia	•		-			
	Europe	_	•				
	Middle East	_	•	_	_		
	North America		•				
	Pacific						
	South America						
	China		_				
	India						
	United States	_	•	•			

Investment Cost + USD	min	max	wa	Capacity Factor + %	min	max	wa
Africa	625	5579	• 1654		0.454	0.913	• 0.618
Asia	536	6082	 1486 		0.202	0.95	• 0.623
Central America and the Caribbean	534	7805	 1021 		0.225	0.796	 0.317
Eurasia	1344	7106	 1756 		0.713	0.958	• 0.831
Europe	507	7957	 3249 		0.228	0.933	• 0.835
Middle East	885	4272	 2895 		0.291	0.929	• 0.566
North America	510	7641	 3584 		0.228	0.958	• 0.847
Pacific	3852	3851	 3851 		0.508	0.506	• 0.507
South America	547	7885	 1662 		0.206	0.942	 0.531
China	542	6082	 1576 		0.206	0.95	• 0.618
India	536	5497	 1112 		0.202	0.976	 0.626
United States	1062	7641	 4076 		0.891	0.958	• 0.93

CENTUEDMAL	Levelised	l Cost of	Energy →	USD/kWh 0	0.05	0.10 0.	15 0.2	0 0.2	5 0.30	
	Africa				_	•	•			
l oli Lii	Central A Eurasia Europe	merica an	d the Cari	bbean		•				
	Middle Ea North Am Pacific	ist ierica			-	:				
୍	South Am China India	erica				•				
	United Sta	ates				-				
Investment Cost → USD		min	max	wa	Capac	ity Factor > 9	6 <mark>min</mark>	max	wa	
Africa		1719	7689	• 3818			0.8	0.92	• 0.84	
Asia		1514	8736	• 3148			0.411	0.929	• 0.83	
Central America and the Ca	aribbean	3260	3537	• 3413			0.57	0.6	• 0.58	
Eurasia		2613	3278	 3113 			0.8	0.8	• 0.8	
Europe		3613	8919	 5209 			0.6	0.8	• 0.66	
Middle East										

North America	2029	8353	 5017 	0.74	0.923	• 0.83
Pacific	3303	4676	 3796 	0.6	0.8	• 0.8
South America	3027	4348	• 3587	0.8	0.95	• 0.82
China	1501	9722	 1943 			
India	1501	7475	 2169 			
United States	2941	8353	 5961 	0.74	0.9	• 0.79

	Levelised Cost of Energy	0.1	0.2	0.3	0.4	
	Africa	•				
POWER	Asia			-		
	Central America and the Caribbean			_		
	Eurasia	-				
	Europe	-			-	
	Middle East					
	North America	•	-			
	Pacific	-	_			
	South America	•		•		
\sim	China	•	_	-		
\sim	India			-		
	United States	•	-			

ASCENDIS (2017)

LCOE of RE technologies for power supply

Investment Cost → USD	min	max	wa	Capacity Factor → %	min	max	wa
Africa	454	6730	• 1478		0.264	0.856	• 0.413
Asia	458	7553	• 1212		0.139	0.947	• 0.46
Central America and the Caribbean	674	5416	• 2945		0.25	0.8	 0.476
Eurasia	519	5416	• 2945		0.169	0.854	• 0.421
Europe	528	7913	 1790 		0.140	0.713	• 0.353
Middle East	453	2186	• 1303		0.201	0.757	• 0.316
North America	723	7103	 2252 		0.184	0.89	• 0.509
Pacific	1780	4119	• 2984		0.241	0.614	• 0.504
South America	527	7211	 1851 		0.251	0.945	 0.569
China	458	7220	 1023 		0.131	0.947	• 0.451
India	467	5759	 1321 		0.115	0.898	• 0.451
United States	723	6757	●1384		0.31	0.779	• 0.398

COLAD DV .	Levelised	Cost of	Energy →	USD/kWh 0	0.2 0	.4	0.6	0.8
JULANEV	Africa							
	Asia							
	Central Ar	nerica ar	d the Carib	bean				
	Eurasia							
	Europe							
	Middle Ea	st						
	North Am	erica			•	-		
	Pacific					-		
	South Am	erica			-			
	China				•	_		
	India				•			
	United Sta	ates			•			
Investment Cost → USD		min	max	wa	Capacity Factor + %	min	max	wa
Africa		944	4110	• 2649		0.016	0.278	• 0.199
Asia		819	7997	 1624 		0.101	0.247	 0.166
Central America and the Ca	aribbean	1600	4000	• 2076		0.155	0.227	 0.198
Eurasia		1545	3697	• 2775		0.117	0.127	 0.119
Europe		944	2827	 1408 		0.098	0.30	• 0.123
Middle East		1311	4000	 2553 		0.174	0.347	 0.256
North America		800	5900	• 2365		0.095	0.336	 0.196
Pacific		1180	7539	 2857 		0.114	0.271	 0.191
South America		1132	4326	• 2249		0.130	0.404	• 0.320
China		998	7780	 1439 		0.101	0.184	• 0.170
India		833	4916	• 1403		0.159	0.247	 0.206
United States		965	5900	 2336 		0.095	0.336	• 0.197

CONCENTRA-	Levelised Cos	st of Er	nergy → U	SD/kWh 0	0.1	0.2	0.3	0.4	0.5	0.6
CUNCENTRA	Africa									
TING SOLAR	Asia						•	_		
THEDMAL	Central Americ	ca and t	the Caribb	ean			-			
INCHWAL	Eurasia									
POWER (CSP)	Europe						_	•	_	
	Middle East						•			
	North America	3							_	-
	Pacific									
	South America	Э								
	China						•			
	India						•	_		
	United States							•		_
Investment Cost → USD	mi	n	max	wa	Сара	icity Fact	or → %	min	max	wa
Africa	100	094	17402	• 14153				0.194	0.194	• 0.194
Asia	35	01	13693	• 4423				0.17	0.535	• 0.275
Central America and the Car	ribbean									
Eurasia										
Europe	481	11	17341	 8839 				0.148	0.631	• 0.308
Middle East	34	91	4097	 3705 				0.194	0.263	• 0.22
North America	471	14	9009	 6794 				0.18	0.405	• 0.299
Pacific	973	35	10767	 9829 				0.21	0.21	• 0.21
South America										
China	35	01	13639	• 3680				0.17	0.28	• 0.272
India	35	39	7475	 4328 				0.206	0.535	• 0.276
United States	471	14	9009	 6794 				0.18	0.405	• 0.299

ASCENDIS (2017)

Overview of costs of sustainable energy technologies

LCOE of RE technologies for power supply

	Levelised	l Cost of	Enerav →	USD/kWh 0	0.05	0.10	0.15	0.20	0.25
ONSHORE I	2000000			0000/11110	0.00		0.1107	0.20	0.20
WIND DOWED	Africa				_	•			
	Asia				-				
	Central Ar	merica an	d the Cari	bbean		•			
	Eurasia					•	-		
	Europe				_	•	•		
	Middle Ea	ist				-	_		
	North Am	erica					_	-	
	Pacific				_	•			
	South Am	ierica							
	China								
	India				-	•	-		
	United Sta	ates			-		-	-	
Investment Cost → USD		min	max	wa	Capacity I	Factor → %	min	max	wa
Africa		1345	2848	• 2080			0.214	0.456	• 0.346
Asia									
		958	2784	 1280 			0.172	0.435	• 0.243
Central America and the C	aribbean	958 1680	2784 2600	 1280 2268 			0.172 0.296	0.435 0.520	• 0.243 • 0.434
Central America and the C Eurasia	aribbean	958 1680 1550	2784 2600 2651	 1280 2268 1751 			0.172 0.296 0.272	0.435 0.520 0.35	 0.243 0.434 0.344
Central America and the C Eurasia Europe	aribbean	958 1680 1550 1353	2784 2600 2651 3652	 1280 2268 1751 1917 			0.172 0.296 0.272 0.139	0.435 0.520 0.35 0.412	 0.243 0.434 0.344 0.277
Central America and the C Eurasia Europe Middle East	aribbean	958 1680 1550 1353 1983	2784 2600 2651 3652 3148	1280 2268 1751 1917 2497			0.172 0.296 0.272 0.139 0.313	0.435 0.520 0.35 0.412 0.390	 0.243 0.434 0.344 0.277 0.372
Central America and the C Eurasia Europe Middle East North America	aribbean	958 1680 1550 1353 1983 1275	2784 2600 2651 3652 3148 3181	 1280 2268 1751 1917 2497 1874 			0.172 0.296 0.272 0.139 0.313 0.166	0.435 0.520 0.35 0.412 0.390 0.516	 0.243 0.434 0.344 0.277 0.372 0.352
Central America and the C Eurasia Europe Middle East North America Pacific	aribbean	958 1680 1550 1353 1983 1275 1060	2784 2600 2651 3652 3148 3181 3752	 1280 2268 1751 1917 2497 1874 2533 			0.172 0.296 0.272 0.139 0.313 0.166 0.275	0.435 0.520 0.35 0.412 0.390 0.516 0.436	 0.243 0.434 0.344 0.277 0.372 0.352 0.337
Central America and the C Eurasia Europe Middle East North America Pacific South America	aribbean	958 1680 1550 1353 1983 1275 1060 994	2784 2600 2651 3652 3148 3181 3752 2903	 1280 2268 1751 1917 2497 1874 2533 1871 			0.172 0.296 0.272 0.139 0.313 0.166 0.275 0.257	0.435 0.520 0.35 0.412 0.390 0.516 0.436 0.534	 0.243 0.434 0.344 0.277 0.372 0.352 0.337 0.426
Central America and the C Eurasia Europe Middle East North America Pacific South America China	aribbean	958 1680 1550 1353 1983 1275 1060 994 1032	2784 2600 2651 3652 3148 3181 3752 2903 1553	 1280 2268 1751 1917 2497 1874 2533 1871 1251 			0.172 0.296 0.272 0.139 0.313 0.166 0.275 0.257 0.221	0.435 0.520 0.35 0.412 0.390 0.516 0.436 0.534 0.36	 0.243 0.434 0.344 0.277 0.372 0.352 0.337 0.426 0.242
Central America and the C Eurasia Europe Middle East North America Pacific South America China India	aribbean	958 1680 1550 1353 1983 1275 1060 994 1032 958	2784 2600 2651 3652 3148 3181 3752 2903 1553 1625	 1280 2268 1751 1917 2497 1874 2533 1871 1251 1228 			0.172 0.296 0.272 0.139 0.313 0.166 0.275 0.257 0.221 0.172	0.435 0.520 0.35 0.412 0.390 0.516 0.436 0.534 0.36 0.258	 0.243 0.434 0.344 0.277 0.372 0.352 0.337 0.426 0.242 0.234

NEESHUBE	Levelised Cost	of Energy →	USD/kWh 0	0.05	0.10	0.15	0.20	0.25	0.30
OFFORUNE	Africa								
WIND POWER	Asia								
	Central America	and the Carib	bean						
	Eurasia								
	Europe				-		•		
	Middle East								
	North America				_	•	-		
	Pacific								
	South America								
	China					•			
	India								
	United States				-	•			
Investment Cost → USD	min	max	wa	Capa	city Facto	r → %	min	max	wa
Africa	2115	5055	• 2668				0.204	0.312	• 0.26
Asia									
Central America and the C	Caribbean								
Eurasia									
Europe	205	3 6480	 4207 				0.27	0.554	• 0.36
Middle East									
North America	2251	5063	• 2972				0.32	0.363	• 0.33
Pacific									
South America									
ooutii America									- 0.26
China	2115	3061	• 2767				0.204	0.287	0.20
China India	2115	3061	• 2767				0.204	0.287	• 0.20

3.2 Costs of electrification: grid extension and mini-grids

Rural electrification is the process of bringing electrical power to rural and remote areas. *On-grid rural electrification* refers to the extension of electricity distribution to rural areas through an electricity grid. Grid connexion is the most expected solution as it is supposed to provide more power and energy to the customers at a lower price. Off-grid options can be grouped in two types. *Mini-grid* (a.k.a. distributed or isolated grids) refers to a system where all or a portion of the produced electricity is fed into a small distribution grid not connected to the main/national grid system. A *standalone (individual)* power system is an off-grid system that supplies a single rural customer with one or several generator sources (hybrid system with diesel and/or various RE technologies).

Table 10	Characteristics of gri	d-connected, mini-g	rid and individua	l (stand-alone) systems
	Grid connected	Minigrid <50 MW/own consumption	Stand-alone systems/ Individual electrifi- cation systems	Productive use
Gas	- 1500 GW			>1 GW Gas-fired CHP systems
Diesel		5–10 GW 50 000–100 000 systems		
Hydro	Large >10 MW 10 000– 50 000 systems >1000 GW	Small < 10 MW 100 000–150 000 systems 75 GW	Micro-hydro 0.1– 1 MW Pico-hydro <0.1 MW	
Wind	310 GW 250 000 turbines	Diesel-wind hybrid <1000 village/mining systems	Small wind turbines 0-250kW 806000 turbines	Wind pumps > 500 000
Solar PV	50 GW/0.5 min large systems >50 kW 80 GW/10-20 min rooftop systems 1-50 kW	Diesel-PV hybrid <10 000 village systems	SHS <1 kW 5–10 mln systems	Solar lighting 5 mln; Telecom towers 10000; Solar water pumps; PV Fridges/refrigeration; Street lighting systems; Traffic signs; Phone recharging stations;
Biogas/ biodiesel to power	14 GW 30 000-40 000 systems	< 100 kW biogas plants > 1 million biogas systems Gasification/rice husk etc 1000-2000 systems		Livestock farms Back-up biodiesel generators
Biomass cogeneration	20 GW pulp, sugar/ethanol 1000-2000 systems 20-30 GW steam cycles/CH 1000-2000 systems 5-10 GW cofiring coal plant 250-500 systems			
Source: IRE	NA (2015), Off-grid Renev	wable Energy Systems		

3.2.1 Grid extension

Grid extension is a network expansion from the national power transmission system to new areas and communities. The cost of extending lines to rural facilities can be prohibitively expensive. Costs of **high-voltage lines** are mentioned in various reports, but usually on a country basis. Some compilation is given below. Please note the difference between *build cost* (capital or infrastructure cost) and *lifetime cost* (build cost plus O&M cost).

Customers are connected through **medium to low voltage distribution** grids. Cost is often reported as cost per connection. *Grid densification* are new grid connection especially for households living close to the local utility grid but who are not yet connected. For grid densification by connecting to transformers (if villages which are located in close proximity to an existing transmission line will be connected) with change of voltage level costs are about EUR 800 as a rule of thumb, and for densification within an existing low-voltage distribution grid costs are EUR 750 per connection (TAF SE4All, 2015)

Table 12Transmission lines

Source:	
UK (Parsons, 2012)	400 kV AC overhead line: USD/km: 2.9- 5.5 million (lifetime); 1.7-2.6 (build cost)
	 1390 MVA: USD 910-975/MVA-km (lifetime power transfer cost/km)
	6380 MVA: USD 820-860/MVA-km (lifetime PTC/km)
	Underground; USD/km: 13.3-26.5 million per km (lifetime); 12.0-23.5 (build cost)
	HVDC (subsea): USD 16.0-38.1 per km
	(converted at GBP = 1.3 USD, 2016)
Hannuksela (2011, Finland)	Price, Eur Total prices for the power models in length of 10 km
	5 000 000,00 €
	4 000 000,00 €
	s 000 000,00 ¢
	2 000 000,00 €
	1 000 000,00 ¢
	· c
	0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
	Power, MVA
TAF SE4All (2015,	Assessment of PIDA projects
2015/16)	(E&S Africa (based on Central African interconnection and North-South Power Transmission Corridor DC).
	Average 1.258 million per km (incl. the AC/DC conversion stations).
	Other data:
	Note that prices depend a lot on rated power, copper prices (transformers), steel prices (overhead
	lines/towers), aluminium prices (overnead lines/conductors), local environment (lines, switchgear) and
	 Cost of 220kV/800A (300MVA) overhead line is approximately 200 000 Euro per km for a double
	circuit line (2 x 300MVA) and approximately 120,000 Euro per km for a single circuit. Both for 'easy'
	terrain and note that this is a very low capacity for an interconnector:
	• 3 MVA transformers for 66/11kV are on the small side, but should cost around 200,000 Euro, 12
	MVA: 300,000 Euro;
	• Switchgear per circuit breaker bay: 66kV: 200,000 Euro/bay; 11kV: 30,000 Euro/bay.
	Some country data: Mauretania (1 circuit) / Senegal (EUR million per km): 0.38; Cote
	d'Ivoire/Ghana/Burkina Faso (single/double): 0.38-0.39; Nepal: 2.00 and Paraguay: 0.67
Italy (Khandelwal,	Overhead (EUR million per km):
Pachori 2013)	- 380 KV: 0.60, 220 KV: 0.385; 132 KV: 0.295
	- 380 kV·3 5, 220 kV·2 2·132 kV·1 875
	- JOU KV. J.J, ZZU KV. Z.Z, IJZ KV. 1.0/J

Table 11 Electricity infrastructure cost

USD million per km	Underground	Overhead lines		
380-400 kV (2 circuit)	4.91 (3.56-5.90)	1.06 (0.58-1.40)	Substations	EUR 38.7k (26.4k-52.1k) per MVA
				EUR 42.6k (25.0k-55.5k) per kV
380-400 kV (2 circuit)		0.60 (0.30-0.77)	HVDC converter station	
220-225 kV (2 circuit)	3.31 (3.98-4.11)	0.41 (0.35-0.46)	1-4 converter	EUR 87.1k (76.0k-103.6k) per mVA
220-225 kV (1 circuit)	2.22 (1.92-2.44)	0.29 (0.16-0.30)	6-8 converter	EUR 155.7 (145.0k-173.3k) per MVA
Subsea cables:				Note (in Netherlands):
- AC: 1.14 (1.10-1.25)				110 kV transmits 60-250 MVA
- DC: 0.76 (0.71-0.79)				220 kV transmits 5000-1000 MVA
				380 kV transmits 1200-1600 MVA
380-400 kV (2 circuit) 220-225 kV (2 circuit) 220-225 kV (1 circuit) Subsea cables: - AC: 1.14 (1.10-1.25) - DC: 0.76 (0.71-0.79)	3.31 (3.98-4.11) 2.22 (1.92-2.44)	0.60 (0.30-0.77) 0.41 (0.35-0.46) 0.29 (0.16-0.30)	HVDC converter station 1-4 converter 6-8 converter	EUR 42.6k (25.0k-55.5k) per kV EUR 87.1k (76.0k-103.6k) per mVA EUR 155.7 (145.0k-173.3k) per MVA Note (in Netherlands): 110 kV transmits 60-250 MVA 220 kV transmits 5000-1000 MVA 380 kV transmits 1200-1600 MVA

Source: Electricity infrastructure cost (ACER, 2015)

 Table 13 Cost per connection of distribution networks

Country	Cost per connection (USD)	Country	Cost per connection (USD)
Benin	2000	South Africa	800
Ghana	5500	Vietnam	570
Tanzania	600-1100	Nicaragua	220-588
Mozambique	134	Bolivia	62
Kenya		Peru	90

Source: McKInsey & Co (2015); EU TAF (2015; 2015/16); www.energypedia.info

The cost will depend much upon the population density in the areas to be electrified, as shown by the following example (taken from EU TAF Sustainable Energy Handbook (Module 5.2). The table below shows that for a locality at 10 km from the grid, connecting only 10 customers (average yearly consumption of 1440 kWh per customer) with a 25 KVA transformer (i.e. 20% of maximum number of customers for this transformer) will cost more than USD 4000 per connection (including financial costs) and an unaffordable distribution cost of around USD 0.30/kWh, while connecting 200 customers with a 200 kVA transformer (i.e. 50% of maximum number of customers for this transformer) will cost around USD 400 per customer with an affordable distribution cost of USD 0.03 /kWh.

		А	В	С	D
MV line length (km)		10	10	10	10
MV/LV transformer capacity (kVA)		25	50	100	200
Maximum number of customers		56	111	223	444
of which households		40	85	178	366
LV Line Length per customer (meter/cust.)		48	47	47	47
Unit economic cost (US\$/customer)					
Connection rate,,,,,,,,,,,,,	20%	4211	2315	1308	760
Connection rate,,,,,,,,,,,,	50%	1752	993	590	371
Connection rate,,,,,,,,,,,,,,,	100%	932	553	351	242

3.2.2 Decentralised grids (mini-grids)

A mini-grid will basically include a power generator and a network to distribute the electricity to the accessible consumers, to avoid the high costs of extending the main grid to these isolated areas. Those consumers should then be distant from the main grid (e.g. over 5-20 km), fairly close to each other (e.g. < 150m or density > 50 customers/km²) and with sufficient load demand (>200kWh/year).

0 v									
Technology -based MG	Size range (kW)	Power plant investment (\$/kW)	LCOE (\$/kWh)	Operating time (h/yr)					
Diesel genset	5 - 300	500 – 1500	0.3-0.6	On demand					
Hydro	10 - 1000	2000 – 5000	0.1-0.3	3000 – 8000					
Biomass-gasifier	50 – 300	2000 – 3000	0.1-0.3	3000 – 6000					
Wind hybrid	1-100	2000 – 6000	0.2-0.4	2000 – 2500					
Solar hybrid	1-150	5000 – 10000	0.4–0.6	1000 – 2000					
MV distribution	33kV	13,000 - 15,000	\$/km (si	te specific)					
LV distribution	380V	5,000 – 8,000 \$/km	A rough estimate of the required length is 30 customers per km.						
Connection costs	ction costs Ideally \$350 per customer (but CAPEX/customer varies \$350-3500)								

Table 14 Reference cost of mini-grid systems

Data compiled by TAF SE4All (2015/16), based on Green Mini-grids (IED, 2013) and IRENA Renewable Power Generation Costs in 2012 (2013)

ASCENDIS (2017)

Overview of costs of sustainable energy technologies

A limited number of publications have analysed the cost of renewable mini-grids. IRENA (2015) mentions costs of solar mini-grids of USD 0.43-0.71/kWh. As indicated in the table below, the cost varies per type of technology used and site location (operating time; load factor). As mini-grid systems RE systems often have batteries as storage, in future, investments cost may go down with the declining of advanced lead-acid. Increasingly, RE hybrid systems are increasingly becoming competitive in comparison with diesel-based grid systems. In many regions, payback periods of 5-7 years can be obtained with PV-hybrid mini-grids (see Figure 18 below).

3.2.3 Stand-alone systems

A standalone individual power system is an off-grid system that supplies a single rural customer with one or several generator sources (hybrid system) and various electrical appliances. According to the power dimension, they can be grouped into four categories: portable lights (i.e. rechargeable & solar lanterns), mini kits (i.e. pico hydro & pico solar systems), home systems (supplied by solar SHS or pico-hydro) and Residential Systems (generally supplied by hydro, wind or solar –with diesel backup or not). Most individual systems in the world are still supplied by diesel/fuel gensets.

Technology	Description	Price range:
Solar portable	Single light source with/without mobile phone charging outlet; Entry	USD 20-60
	level products with solar (PV) panels of 0.2-2 W	
Pico PV systems	Multi-lights source applications with mobile phone charging outlet	USD 150-200
	made of a kit of components. Power range: 2-10 W	
Solar home systems	Multi lights source applications with mobile phone charging outlet;	USD 150-400
(SHS)	Can power devices such as radio and TV. Power range: 10 W-250 W	
Residential home	12V systems replace diesel generators or car batteries. Can power	USD 400-1500
systems	multiple lighting points and devices as TV and fridges. Power range:	
	250 W-1,000 W	
Cost data compiled by auth	nor	

Table 15 Costs of stand-alone PV systems

cost data complied by adtion

ASCENDIS (2017)

Table 16 The energy ladder and energy access

Rural electrification can be implemented through the 3 following options: 1. On-Grid rural electrification. 2. Distributed grid (mini-grid), 3. Stand-alone systems. For those populations and communities, the only way to get access to modern energy on a reasonable time scale is to implement off-grid solutions from the market adapted to the range of affordability. Individual off-grid solutions can empower the most remote communities to get a critical first step onto the **energy ladder** with basic energy services such as lighting, mobile phone charging, fans, TV, etc. Lighting and phone charging are the beginning not the end of energy access. Once these basic needs are met, many populations are capable of expanding their energy consumption to include higher level needs like refrigeration or even productive uses, such as agro-processing.

Energy access is not a simple question of 'having' or 'not having access'. The SE4ALL initiative by the United Nations is proposing use of multi-tier framework that recognizes the energy supply ladder, whereby a user's improved energy access leads to more demand for greater quantity and quality of energy. Tiers are based on the attributes of people's energy supply, and the services they use based on that supply. The indicative household electricity framework has six tiers: each defined by electricity supply attributes such as quantity, duration, evening availability, affordability, quality of supply, and legality of connection. A higher tier up the energy ladder represents an electricity supply with better attributes and the possibility of access to more modern energy services. The table below displays the average connection cost per customer according to the broad range of use on the energy ladder.

Continuous Spectrum of improving Electricity supply Attributes										
Attributes	Tier 0	Tier 1	Tier 1	Tier 1.5	Tier 2	Tier 2.5	Tier 3	Tier 3	Tier 4	Tier 5
									Tier 3 and	
		Task lighting	Task lighting	4 lights,	General	General	Tier 2 and	Tier 2 and	any	Tier 3 and
		and phone	and phone	phone	lighting and	lighting and	any low	any low	medium	any high
	Kerosene	charging (or	charging (or	charging	TV or fan (if	TV and fan	power	power	power	power
Service Description	lighting	radio)	radio)	and radio	needed)	(if needed)	applicances	applicances	applicance	applicances
Peak available		1		10	20	50	200	FOO	2000	2000
capacity (W)	-	1	2	10	20	50	200	500	2000	2000
Duration		4	4	4	4	4	0	0	16	22
(hours/day)	-	4	4	4	4	4	0	•	10	22
Evening supply		2	2	2	2	2	2	2	4	4
(hours/day)	-	2	2	2	2	2	2	2	+	4
			Averag	e annual con	sumption per	r household				
Load factor		17%	17%	17%	17%	17%	18%	20%	20%	25%
annual consumption		15	72	14.6	20.2	72	215	976	2504	4380
(kWh/year)		1,5	7,5	14,0	25,2	/3	515	870	3304	4360
Price of electricity		5.0	4.0	4.0	4.0	2.0	10	0.50	0.30	0.25
(US\$/kWh)		5,0	4,0	4,0	4,0	5,0	1,0	0,50	0,50	0,25
annual cost		7.2	25	50	117	210	215	420	1051	1005
(US\$/year)		1,3	35	58	11/	219	315	438	1051	1095
				Average cost	s (US\$/house	hold)				
Least cost		70	110	166	288	500	1800	3200	1600	1600
Likely electricity supply technology	None		Solar lanterns	$) \subset$	Stand-alone system	e home ns		1ini grid	on gr	id

Source: TAF SE4All (2015/16), based on ESMAP work (see e.g. ESMAP, 2015)

3.3 Cost comparison of electrification options

On-grid connections can be cost-effective for more dispersed populations living within a reasonable distance of transmission and distribution lines, even allowing for the additional expense of extending the service. The maximum economic distance for extending the grid tends to reduce over time, as the costs of generation in mini-grids or off-grid systems come down. beyond a certain distance, the costs of grid extensions become prohibitive, tipping the balance in favour of mini-grids or stand-alone systems.

Grid extension Solar PV mini-grid Solar Home System Diesel mini-grid mini-grid – High 1,579 0,714 0,738 0,695 1,237 0,467 -Low 0.132 0,463 0,585 0.633

Assumptions:

- Installation costs:
 - Grid extension: USD 22,000/km (for transmission line only)
 - Solar PV: USD 7,230/kWp
 - Generator costs: USD 13,200 (30KVA) and USD 6,000 (7KVA)
- A distribution grid of 2km at a fixed cost of US\$18 000/km is assumed for each option (except in the case of SHS).
- 100 connections, each consuming an average of 50kWh/month is assumed for the grid extension (diesel)
- Cost of diesel: an additional 50% has been added to the diesel price to take account for transportation to site

- Discount rate: 10%

- Rule of thumb grid extension cost:
- 5-100 connections/km (USD 580-4500 per connection).
- 3-5 connections/km (USD 4500-6500 per connection).
- < 3 connections/km (>USD 6500 per connection)
- The LCOE (levelised cost of energy) of hybrid-solar PV is generally competitive with that of grid extension when the extension would imply <10 connections/km
- IRENA (RE costs 2014): residential/SHS cost USD 0.14-0.47 per kWh (based on costs in selected countries)

Source: Norplan (2012). Policy Brief: Cost-benefit analysis of rural electrification

Figure 27 Levelised cost of electricity for on-grid and off-grid technologies in Sub-Saharan Africa (2012)

The comparison between these two options turns on the density of settlement, with higher density favouring the development of mini-grids. The main technologies available for these types of systems are diesel generators or renewable energy technologies – solar photovoltaic (PV), small hydropower and small wind systems. The attractiveness of renewable technologies is much higher when costs are considered on a life-cycle basis, but finance must be available to meet the relatively high upfront outlay, which – even as costs come down – remains significantly above that required for a diesel generator. Generators have the advantage of providing power when needed (if fuel is available), but also face the significant downside of ongoing fuel costs, which can vary substantially. Diesel or gasoline is subsidised in some of the major oil-producing and exporting countries. Hybrid systems combining fossil fuel and renewables power generation (e.g. diesel and solar PV) can bring more flexibility and higher reliability of supply at acceptable costs.

Although, the 2007 ESMAP publication "Technical and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies" presents costs (for 2005; with projections for 2010 and 2015) in a systematic way. Although a bit dated, the publication gives the calculation methods and assumptions and, if needed, can be re-done with newer sets of data (see Annex A).

4. HEATING AND COOLING APPLICATIONS; FUELS

4.1 Heat applications (for productive and residential uses)

Energy use for heat accounted for about half of total world final energy consumption in 2015.Global consumption of heat energy grew at an average annual rate of less than 1% in recent years (REN21, 2016). Energy in thermal applications can be provided by burning fossil fuels (oil products, coal products, natural gas). Renewable energy is used to meet heating and cooling demands by means of solar thermal, geothermal, aerothermal or hydrothermal² as well as biomass resources in solid, liquid and gaseous forms. Bioenergy accounted for over 90% of modern renewable heat generation in 2015 (used in the industrial and buildings sector), solar thermal 8% (in the buildings sector mainly) and geothermal energy 2% (REN21, 2016).

4.2 Biomass heat and fuels

Bioenergy is energy derived from biomass (for cooking, heat, fuel, power) and can be classified in **traditional biomass** – fuelwood, charcoal, dung used in traditional devices (for cooking, heating, lighting) and **modern biomass** – used directly as above in modern devices and/or processed or converted into biofuels for heat, mechanical power and electricity. Approximately 60% of total biomass used for energy purposes is traditional biomass (REN21, 2016).

² Heat pumps utilise the ground, ambient air or water bodies for heating and cooling.

Box 2 Conversion and uses of biomass for energy

Biomass use for energy is multi-faceted: many different raw and/ or processed types of biomass can be transformed via numerous conversion technologies for use in energy sectors (residential, commercial, and industrial heating, electricity, or transport (figure taken from REN21, 2015, Fig. 6)

Globally, biomass was used to produce an estimated 12,500 TWh (45 EJ) of heat in 2014/15 and accounting for nearly 77% of total global primary bioenergy demand. Roughly 70% (8,805 TWh, 31 EJ) of this was generated from traditional biomass, which is used for heat primarily in Asia (5,305 TWh or 19.1 EJ) and Africa (3,222 TWh or 11.6 EJ; REN21, 2015, 2016). Biomass has many **alternative uses**, such as food and animal feeds, material (e.g. construction) and chemical products.

Biomass feedstock can be divided into the following categories:

- From natural resources (forest, grassland, woodland, aquatic biomass)
 - Naturally grown (wood and crops)
 - Agricultural, agroforestry and forestry schemes (crops, wood)
- Forest and agricultural by-products (such as sawdust, cereal brans)
- Organic content in waste streams (municipal waste, wastewater, industrial waste)
- Dedicated energy crops (different from natural resources crops in the sense that these are grown for energy purposes, sugar crops, starch crops, oil crops, lignocellolusic crops)
- Woody crops, oil crops and sugar/starch crops, aquatic feedstock (algae).

Solid biomass includes wood and wood residues (sawdust, bark) that has been used for thousands of years for cooking and heating, and as dry agricultural residues that can be used burnt directly (*direct combustion*) or converted into a solid, liquid or gaseous fuel with lower moisture content and better calorific value, by mechanical means (*pellets, briquettes*) and thermochemical means (charcoal production, gasification). The fuel obtained (*charcoal, wood/producer* gas) can be burnt in heat applications or power generation.

Wet residues (animal manure; wastewater; waste from food industry), MSW (municipal solid waste) as well as certain energy crops (e.g. elephant grass) can be used in bio-digesters to produce *biogas* in a process called anaerobic digestion. Another biochemical conversion method is the production of *ethanol*, usually from dedicated energy crops (sugar crops, such as sugar cane, or starch crops, such as maize) to be used as *transport fuel*. *Biodiesel* is produced from vegetable oil.

Worldwide, charcoal, fuel wood, crop residues are used predominantly for traditional heating and cooking. Similarly, Biogas is also produced in small, domestic-scale digesters, mainly in developing countries—including China, India, Nepal, and Rwanda—and is combusted directly to provide heat for cooking (REN21, 2014). Wood pellets and wood chips, as well as biodiesel and ethanol, all are now commonly traded internationally in large volumes

4.2.1 Modern bio-heat applications

Solid, liquid, and gaseous biomass fuels can be combusted to provide higher-temperature heat (200–400 °C) for use by *industry, in district heating schemes, in agricultural processes*, and in combined heat and power (*CHP*) plants. They also can be combusted for use at lower-temperature heat (<100 °C) for cooking and water heating; drying; for heating water for domestic, commercial, or industrial use; and for heating space in individual buildings. Biomass is the most widely used renewable source for heating by far, accounting for approximately 90% of heat from modern renewables; solid biomass is the primary fuel source (REN21, 2014). Modern bioenergy applications provided some 14.4 EJ of heat in 2015, of which an estimated 8.4 EJ was for industrial uses and 6.3 EJ was consumed in the residential and commercial sectors, used principally for heating buildings and cooking (REN21, 2016). Most industrial-scale biogas production is in the United States and Europe, although other regions increasingly are deploying the technology as well

HOT WATER / HEATING / COOLING									
Technology	Plant size	Capacity factor	Conversion efficiency	Capital costs (USD/kW)	Typical energy costs (LCOE US cents/kWh)				
Biomass heat plant	0.1–15 MW _{th}	~50–90%	80–90%	400–1,500	4.7–29				
Wood pellet heater	5-100 kWth	15-30%	80-95%	360-1,400	6.5-36				
Biomass CHP ⁵ 0.5–100 kW _{th} ~60–80% 70–80% for heat and power 600–6,000 4.3–12.6									

Table 17 Capital costs and LCOE of biomass for heating (hot water, steam), space heating and cooling

Source: TAF SE4All (2015-16), data taken from REN21 (2015)

TECHNOLOGY	TYPICAL CHARACTERISTICS	CAPITAL COSTS USD / kW	TYPICAL ENERGY C. LCOE – US cents / Wh					
Heat Pump: Ground-source (resi- dential and commercial)	Plant size: 10-350 kW th Conversion efficiency: 280-500%	500-2,250	7–13					
Heat Pump: Domestic water heaters	Plant size: 1–2 kWn Conversion efficiency: 250–300%	300-350	6-7					
Heat Pump: Water-source (residential, including multi-family)	Plant size: 4–40 KW the Conversion efficiency: 300–400%	500-700	5–7					
Heat Pump: Alr-source	Plant size: 1–2 kW _m Conversion efficiency: 300–400%	350-400	5–7					
ource: REN21 (2015)								

4.2.2 Liquid fuels

*Ethano*l is produced by fermentation of sugar crops (e.g. sugarcane) or starch crops (after converting starch into sugars, e.g. corn, wheat). The fluid obtained is distilled to get anhydrous (99-100%) or hydrous ethanol (95-96%); anhydrous ethanol can be blended with gasoline and hydrous ethanol as fuel for dedicated internal combustion engines. Production from sugarcane is often more cost-effective than from other crops, because By-product bagasse (30% of weight of plant) is used on-site to generate steam for CHP (for distillation and other heat uses) and electricity needs (sometimes excess is delivered to the grid). About 70-80 litres of ethanol per ton of sugarcane (about 6000 litres per hectare).

Straight vegetable oil (SVO) can be used to replace (partially) diesel fuel in diesel engine (for stationary applications); if used as single fuel, engine modification is needed. Transesterification of vegetable oil (using methanol and a catalyst) produces *biodiesel*. The characteristics are close to that of diesel and transesterification of vegetable oil (using methanol and a catalyst) and no engine modifications are required. Biodiesel and ethanol are practically the one available renewable transportation fuels.

Ethanol	0.63	Biodiesel	0.90
Ethanol (adjusted for energy content)	0.85	Biodiesel (adjusted for energy content)	0.99
Gasoline	0.72	Diesel	0.77
Difference (adjusted for energy content)	0.13	Difference (adjusted for energy content)	0.22

Overview of costs of sustainable energy technologies

4.2.3 Traditional uses of bioenergy and modern methods

Traditional' bioenergy, can be classified as:

- o Systems in open stoves, ovens or fires or any system that releases indoor smoke
- o Traditional methods of charcoal production (e.g. in earth mounds or pits)

Figure 30 Comparison of cost of cooking fuels

US\$ per year

Open fire and traditional mud stoves have been reputed to have low efficiencies, varying between 5 and 15%. Simple improvements can yield a more efficient combustion. Firstly, heat loss can be reduced by enclosing the fire by constructing a stove. Adding a chimney to the stove, improves air draft and conduct exhaust gases outside the dwelling. With improved stoves, efficiencies of 15-45% (site-built oven), 20-30% (metal stove) up to 50% have been obtained. Charcoal is relatively smokeless and has better burning characteristics than wood. It has a higher net heating value than wood (29 and 16 MJ per kg), it is lighter an easier to handle and transport. In urban areas, it is often easier to buy. Charcoal stoves are made of metal and have an efficiency of 10 to 20%. Improved popular types include the Thai bucket stove and the Kenyan improved *jiko*, with efficiencies of 25-40%. However, because charcoal is made of wood, the efficiency of the charcoal production is as important as that of the charcoal stove itself. With traditional methods, it takes from 5 up to 12 tonnes of wood to produce 1 tonne or charcoal. Typically, cooking with charcoal consumes more than twice as much wood as burning firewood directly.

This indicates by "system efficiency" in the figure, i.e. the overall conversion efficiency is determined by multiplying 'stove efficiency' with the 'conversion efficiency' of production of the fuel. *Source: J. van den Akker*

Another issue is the cost of fuel. Traditionally, wood is gathered and is free in terms of monetary costs. However, there is a 'value' involved in the sense that people have to spend time on wood collection, time which could be spent in more useful activities, as is indicated in the figure on the left

Source: www.energyfordevelopment.com

Consumption of fuelwood for traditional energy uses remained stable in 2015 compared to previous years, at an estimated 1.9 billion cubic metres (m3); the largest shares of fuelwood (as well as other fuels such as dung and agricultural residues) are consumed in Asia, South America and Africa (REN21, 2016). The use of charcoal for cooking in many developing countries reached an estimated 55 million tonnes in 2015.

Many people use wood or some form of biomass fuel; usually biomass fuels are easily accessible and biomass fuels are more affordable to the poor. Energy conversion efficiency of traditional stoves only 5-15%, while with *improved cooking stoves* (ICS) efficiencies of 20-60% can be obtained. As alternative, *fossil fuels* can be used. LPG cooks fast and efficient (8-9 times that of firewood and 2 times better than charcoal); often LPG is readily available in (semi-)urban areas. Kerosene stoves are also used (in simple wick stoves to pressurized stoves). Unlike LPG is can be bought in small quantities, but kerosene is highly flammable and can cause fires and deaths. Stoves have been developed that use *gellified ethanol* (gelfuel), about 55,000 have been introduced (mainly in Africa).

Biogas is used in rural areas in certain countries, notably China, India, Nepal and Vietnam. In 2014, China had an estimated 100,000 large-scale modern biogas plants and 42 million residential-scale bio-digesters (where the fuel is used primarily for cooking). India has about 4.75 million plants, Nepal 250,000 and Vietnam about 125,000 (REN21, 2016 and ENEA, 2013).

Table 18 Costs of biogas in small-scale applications

A typical rural family with 3-10 cattle (stationary) can produce 1-3 m³ of gas to provide needs for cooking and lighting.

Biogas system by size of fermenter	3 m³	12 m ³
Required number of cows (cross breed, zero grazing)	2-3	8-12
Manure feed (litres/day)	50	200
Water feed (litres/day)	25	100
Biogas production (m ³)	1	4
Daily cooking hours (using a two burner stove)	1.5-2	6-12
Slurry production (litres/day)	75	300

Costs quoted in literature of small biogas systems are highly variable. REN21 (2015) mentions USD 500-1000 per unit (with digester size of 6-8 m³). The SNV publication *"Productive Biogas: Current and Future Development"* gives case studies of biogas applications in various countries, of which the financial and cost figures are summarised below:

	Vietnam	Uganda	Honduras	Mali	Peru
Feedstock	Pig manure	Water hyacinth	Coffee	cattle dung and	Horse and cow
		Cow manure	wastewater	other	manure
Digester volume (m ³)	50-500	183	152	26	150
Generator capacity (kW)	n.a.	12	14	7.5	16
Feedstock needed (kg/d)		WH: 2000; CM: 750	0.12 m³/d	180 kg fresh dung	160
Mixing ratio (feedstock:water)	1:2 or 1:3	1:1	n.a.	1:1	1:6
Expected biogas (m ³ /d)	0.034 m ³ /kg/d	52.5	45.4	6	18
Expected energy (kWh/d)	6*0.29*m ³ gas	68	12.6	5	84.8
Actual biogas (m3/d)		12.38	45.4	2.64	18
Actual energy (kWh/d)		15.47	12.6	2.8	16
Installation cost (EUR)	30-45/m ³	36,600	-	2,444	84,000 (plus
					power system)
Operational cost	-	6,195	250,000	-	EUR 0.36/kWh
feedstock price	free	EUR 4.5/MT (CM)	-	-	-
		EUR 11/MT (WH)			
Energy sales revenues	own use	EUR 2/MT (WH)	-	EUR 0.5-1/m ³	EUR 0.30-
		EUR 8/MT (CM)			0.41/kWh
Payback period	7-10 years	depends	14	8.5	-

4.3 Solar thermal heat and cooling

The estimated total cumulative capacity of solar thermal collectors in operation worldwide by the end of 2013 reached 375 GW_{th}, corresponding to 535 million m² of collector area (IRENA, 2015; IEA-SHC, 2014). In 2013, the top six countries in terms of total installed capacity of glazed water collectors were China (260 GW_{th}), Germany and Turkey (both around 11 GW_{th}), Brazil and India (around 4 GW_{th}). In terms of the amount installed per capita, Cyprus, Austria, Israel, Barbados and Greece were the top five countries. An interesting market for future STS deployment are the island and island-nations (IEA-IRENA, 2015). For example, the Barbados Government has supported development of a local solar thermal systems (STS) industry since the early 1970s through tax exemptions, levies on electric water heaters, mandates for STS deployment in housing developments and incentives to manufacturers (e.g., tax breaks) and end-users (e.g., rebates at ~50% of system cost). The REN21 (2016) report mentions installed capacity of 435 GW_{th} (622 million m²), providing approximately 357 TWh (1,285 PJ) of energy (heat), of which 309 GW_{th} in China (71% of the global market).

The average costs for small domestic **solar hot water solar systems** (including auxiliary heater) vary widely (USD 250-2,500/kW) between different countries (IEA, 2012). Collector and mounts account for 50% of capital costs while tubing and insulation account for 16% and the storage tank for around 11%. Other system components are the valves, sensors and gauges, heat exchangers and pumps (NREL, 2012). The wide STS cost range results from the variety of technology types³, quality, material and labour costs. In some emerging economies, prices could be less than half of the costs indicated, if more materials and parts of the system were produced locally (IRENA-IEA, 2015a). Costs is also different between low-temperature systems (USD 45-60/m²) and high-temperature systems (USD 160-400 m²).

The capital costs of **solar cooling** technologies are dominated by the solar block (37%), followed by the thermal chiller (29%). Other cost components are installation (19%), storage (8%), and the heat rejection loop (7%). Total system costs (in 2011/14) are in the range of USD 4,350-5,550/kW, while capital costs are in the range of USD 425/m² or USD 1 915/kW for a 100-kW thermal chiller. However, the costs of the adsorption chiller are highly dependent upon the scale ranging from USD 1,560/kW for 20 kW cooling capacity to USD 3,600/ kW for 200 kW cooling capacity (IRENA-IEA, 2015b)

The costs of **solar heat for industrial process** heat strongly depend on process temperature level, demand continuity, project size and the level of solar radiation of the site. For conventional solar thermal systems (flat plate and evacuated tube collectors), investment system costs range between EUR 250–1,000/kW in Europe, and around EUR 200–300/kW in India, Turkey, South Africa and Mexico. The energy costs for feasible solar thermal systems range from EUR 0.025-0.08/kWh, and a European roadmap targets solar heat costs of eurocents EUR 0.03–0.06/kWh (ESTIF, 2014; IRENA-IEA, 2015b).

For **solar concentrated systems**, heating costs are in the range of eurocents EUR 0.06-0.09/kWh with a target of EUR 0.04-0.07/kWh for concentrating systems by 2020 (ESTIF, 2014; IRENA-IEA, 2015b). Concentrated systems include Parabolic Dish Collectors (developed and used in India) with costs ranging from USD 400–1,800/kW, Parabolic Trough Collectors with costs ranging from USD 600–2,000/kW, and Linear Fresnel collectors in the range of USD 1,200–1,800/ kW. As of 2011/12, there were about 200 CSH worldwide, of which about 85 in India. In India, number of CSH increased to about 250 in 2015; total collector area of about 48,000 m2. Investment cost: about USD 330/m2 with payback times of about 6 years⁴.

³ The solar collector is the key component of a solar thermal system. Two dominant designs exist: flat-plate solar collectors (FPC) and evacuated tube solar collectors (ETC). Globally, FPC account for around 26% and ETC for 65% of installed capacity. The other 8% of installed capacity are unglazed systems (often used to heat swimming pools; IEA-SHC, 2014). Regarding the system. a distinction can be made between thermo-syphon (or passive) systems and pumped (or active) systems.

Source: J. Van den Akker, Mid-term Review Report, UNDP/GEF project Solar Concentrators for Process Heat Applications in India (2014)

Costs		Typical current International values and ranges										
Typical Breakdown Heating (US)		Collector: 51% Storage: 11% BoS Costs: 38%										
Typical Breakdown Cooling (Greece)	Solar loo	olar loop: 37%; Storage: 8%; Thermal chiller (100 kW): 29%; Heat rejecti Services: 18%										
System	S	The	mo-syphon	direct	4	Thermo-sy	phon indirect					
Country/Region	Australia	China	India ^b	South Africa	Turkey	Southern Europe	US¢					
Investment costs ^a , USD/kW	1100	100-250	130-180	630-650	130	630	2300					
Collector yield, kWh/m²a	850	770-860	850	900-1000	770-900	685	550-700					
Collector size, m ²	3.5	4	2-4	2.5-4	4	2.5-4	6					
Costs		Тур	ical current	international	values and r	ranges						
System		Pump	ed Indirect			Pumped D	irect					
Country/Region	USc	Cent	ral Europe	North Europ	e U	JS¢	South Africa ^d					
Investment costs ^a , USD/kW	2 300	85	0-1900	1600-2400	17	00	760-820					
Collector yield, kWh/m²a	550-700	D I	395	360	550	-700	900-1000					
Collector size, m ²	6		4-6	4-6		6	2.5-4					
Application	Large Sca	le SWH	So	lar CS ^e	SWH d	listrict heat	Solar Cooling					
Country/Region	Euro	pe	China	Germany	De	enmark	Global					
Investment costsª, USD/kW	350-1	040	980-1400	1800	35	60-400	1600-3200					
Collector yield,	68	5	580	530-622	45	50-480	395-685					

Source: IRENA-IEA (2015), Table 2

kWh/m²a

Table 20 Costs of solar thermal technology for industrial processes

Solar concentrating technology:

	Specific thermal power (kW/m ²)	Location	Cost (USD/m²)	Cost (USD/kW)
		China	130	200-220
CPC vacuum tube	0.60-0.65	Europe	450-900	690-1500
	0.3	India*	333	1133
Parabolic dish fixed	0.21-0.31	India	113-300	365-1430
Parabolic dish tracking	0.34-0.74	Indiatic	300-600	600-1760
	0.50-0.56	Europe	650	1160-1300
Parabolic	0.22- 0.28	India ^d	445	1580-2040
uougn	0.55-0.7	Mexico	400-629	570-1100
Linear Fresnel	0.50-0.56	Europe	650-900	1160-1800

Source: IRENA-IEA (2015), Table 2

4.4 Solar water pumping

Solar-based irrigation solutions can be competitive on a life-cycle basis against pumps powered by fossil fuels, they are a capital-intensive technology with front-loaded investments that pay back over time. System costs continue to fall as a result of the dramatic reduction in solar photovoltaic costs, approximately 80% between 2012 and 2015 (IRENA, 2016b). A recent study by SNV (2014) compares conventional technologies (petrol and diesel pump sets), along with an inventory of RE alternatives: wind pumps, solar PV pumps, solar thermal pumps and biogas (see the Table below).

Table 21Costs of smal	l-holde	er irrigatio	n						
Plot size and water requirem	ents	Unit	Remai	rks					
Plot size	2 000	m²	Plot siz	e under irr	igation				
Total water lifting	7,0	m	Based possibl	on water d e water lift	epth and ing				
Required pump capacity	6,0	m³/day	Based	on peak wa	ater need				
Peak water need	6,0	mm/m²/day	Based	on maximu	im evaporation				
Peak water need	6,0	l/m²/day							
Average water need	3,0	l/m²/day	Used in	calculation	IS				
Operating costs variables			Based	on:					
			http://o	chartsbin.co	om/view/5437				
Petrol / gazoline costs	1,20	€/I	http://o	chartsbin.co	om/view/1115				
Dielsel costs	1,00	€/I	http://o	chartsbin.co	om/view/1128				
Biogas costs	0,00	€/m³	Cost of	biogas unit	not included				
									Windmill
Running costs									
Pump capacity		m³/hr	9	36	9	1,2	1,2	1,3	1,5
Punning hours		hr/day	0,7	0,2	0,7	5,0	5,0	4,6	4,0
Running costs		€/day	0,48	0,12	0,00	0,00	0,00	0,00	0,00
Running costs per season		€/season	58,56	14,23	0,00	0,00	0,00	0,00	0,00
Annual costs									
Maintenance costs	Maintenance costs €/yr				99	97	201	42,25	45
Financing costs									
Life time		yr	4	7	15	15	15	8	15
Total investment costs		€	170	440	950	530	2815	310	900
Source: SNV (2014)									

Another way to compare is to look at the years to breakeven, i.e. when will the lifecycle cost of the RE pump become lower than that of the diesel pump. The following table gives the example of an analysis in Namibia after how many years does a solar pump become cheaper than a diesel pump for different heads and daily water output.

					-	0		• • •			
			Daily water [m³/day]								
		3	4	6	8	13	17	25	33	50	
	20	0.0	0.0	0.0	0.0	0.2	0.5	1.0	1.3	2.6	
	40	0.0	0.0	0.2	0.5	0.8	1.2	2.6	2.8	5.6	
Έ	60	0.0	0.1	0.5	1.0	1.2	2.6	3.5	5.9	7.2	
ad [80	0.0	0.3	1.0	1.7	1.8	3.6	6.4	6.7	7.8	
Ŧ	120	0.0	0.9	1.9	2.7	4.1	7.1	8.2	Diesel	Diesel	
	160	0.2	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	
	200	0.6	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	
Sour	ce: Ei	mCON (200	6)								

Table 22	Vears to breakeven	over the operating	life of PV an	d diesel num	ns Namihia
I able 22	i ears to preakeven	over me operating	me of r v an	a alesei pulli	ps, manndia

Box 3 Gujarat, India; solar PV pumps in salt production

Nearly 70% of India's salt is made in Little Rann of Kutch in Gujarat. The majority of the 43,000 salt pan farmers use inefficient diesel-powered water pumps to extract brine from the ground as part of the salt harvesting process. As a result, diesel accounts for a significant proportion of farmers' production costs. In fact, farmers spend up to 40% of their annual revenue of around EUR 1225 per season on buying diesel for the next production season, thus reducing disposable income.

Powering pumps with solar energy can reduce production costs, as well as increase reliability, efficiency and salt harvest outputs. A solar PV pump (2 kW array and 2 0.75 kW pumps) will cost EUR 2,153 (20 years lifetime and 5 years of the pump) in comparison with an equivalent diesel pump costing EUR 643 (about 7 years lifetime). However, depending on the use (about 16 hours per day in the salt extraction season of 180 days), using PV means avoiding the use of 1,440 litres of diesel and additional savings of about 603 per season. Thus, once the pump is repaid (in 3-4 years), the farmer will save 40% above their annual earning

Source: TAF SE4All (2015)

4.5 Solar desalination

Today's global desalinated water production amounts to about 65.2 million m³ per day (24 billion m³ per year), equivalent to 0.6% of global water supply. Major desalination technology options are based on thermal processes using both heat and electricity, and membrane technologies using electricity only. The dominant technology is Reverse Osmosis (RO), which accounts for 60% of the global capacity, followed by Multi Stage Flash (MSF), with a 26.8% share. The larger desalination plants can reach a capacity of up to $800,000 \text{ m}^3 \text{ per day or more.}$

Table 23 Comparative c	osts for renewable desalination
	Water cost (USD/m ³)
Solar stills (passive)	1.3-6.5
PV (reverse osmosis)	Brackish water: 6.5-9.1
	Sea water: 11.7-15.6
PV (electro-dialysis)	Brackish: 10.4-11.7
Wind (reverse osmosis)	Brackish water: 3.9-6.5
	Sea water: 6
Wind (electro-dialysis)	Brackish: 2.0-3.5
Geothermal	Sea water: 3.8-5.7
Source: IRENA-IEA (2013)	

The cost of desalination (with fossil fuels) has been decreasing over the last years down to USD $0.5/m^3$, while market prices for desalinated water are typically between USD $1-2/m^3$. Renewable energy can play an important role in desalination.

Renewable technologies that are suited to desalination include solar thermal, solar photovoltaics (PV), wind, and geothermal energy.

Source: IRENA (2015c). Shaded areas represent technologies in R&D stage.

ANNEX A. TERMS OF REFERENCE OF THE EVALUATION

Technoloav	l ife Years	C.a Fa	nacitv actor %	Rated Output kW	Fnaineerina	Fauinment & Materials	Civil	Frection	Process Contingency	Total
 Diesel/Gasoli Generato 	ne pr	10	30	0.300) –	890	-	_	-	890
		10	30	1	-	680	-	-	-	680
		20	80	100	10	600	10	20	-	640
Base Loa	ad	20	80	5,000	30	510	30	30	-	600
Peak Lo	ad	20	10	5,000	30	510	30	30	-	600
Microturbines		20	80	150	10	830	10	20	90	960
Fuel Cell		20	80	200	-	3,100	-	20	520	3,640
		20	80	5,000	-	3,095	5	10	520	3,630
Oil/Gas Combi	ustion Turb.	25	10	150,000	30	370	45	45	_	490
Coal Steam (with FGD & SCR)	SubCritical SubCritical SC USC	30 30 30 30	80 80 80 80	300,000 500,000 500,000 500,000	100 90 100 110	870 850 880 850	110 100 100 100	110 100 100 100	- - 100	1,190 1,140 1,180 1,260
Coal IGCC (without FG)	GD & SCR)	30 30	80 80	300,000 500,000	150 140	1,010 940	150 140	100 100	200 180	1,610 1,500
Coal AFBC (without FG)	GD & SCR)	30 30	80 80	300,000 500,000	110 110	730 680	120 120	120 110	100 100	1,180 1,120
Oil Steam		30	80	300,000	80	600	100	100	-	880
Oil/Gas (comb.	Cycle)	25	80	300,000	50	480	50	70	-	650

Table 24 2005 Conventional power technology capital cost (USD/kWh)

Technology	Ra	ted Output kW	Levelized Capital Cost	Fixed O&M Costs	Variable O&M Costs	Fuel Costs	Total
Diesel/Gasoline Ger	nerator	0.300	5.01	-	5.00	54.62	64.63
		1	3.83	_	3.00	44.38	51.21
		100	0.98	2.00	3.00	14.04	20.02
	Baseload	5,000	0.91	1.00	2.50	4.84	9.25
	Peak Load	5,000	7.31	3.00	2.50	4.84	17.65
Microturbines		150	1.46	1.00	2.50	26.86	31.82
Fuel Cell		200	5.60	0.10	4.50	16.28	26.48
		5,000	5.59	0.10	4.50	4.18	14.30
Combustion Turbin	nes Natural Gas Oil	150,000	5.66 5.66	0.30 0.30	1.00 1.00	6.12 15.81	13.08 22.7
Combined Cycle	Natural Gas Oil	300,000	0.95 0.95	0.10 0.10	0.40 0.40	4.12 10.65	5.5 [°] 12.10
Coal Steam (with FGD & SC	SubCritical R)	300,000	1.76	0.38	0.36	1.97	4.4
	SubCritical	500,000	1.67	0.38	0.36	1.92	4.33
	SC	500,000	1.73	0.38	0.36	1.83	4.2
	USC	500,000	1.84	0.38	0.36	1.70	4.20
Coal IGCC (without FGD &	SCR)	300,000	2.49	0.90	0.21	1.79	5.39
		500,000	2.29	0.90	0.21	1.73	5.1
Coal AFBC (without FGD &	SCR)	300,000	1.75	0.50	0.34	1.52	4.1
		500,000	1.64	0.50	0.34	1.49	3.9
Oil Steam		300,000	1.27	0.35	0.30	5.32	7.24

2005 Conventional power technology generating cost (USD/kWh)

Technology		Life Years	Capacity Factor %	Rated Output kW	Engineering	Equipment & Materials	Civil	Erection	Process Contingency	Total
Solar-PV		20	20	0.050	_	6,780	_	_	700	7,480
		20	20	0.300	-	6,780	-	-	700	7,480
		25	20	25	200	4,930	980	700	700	7,510
		25	20	5,000	200	4,640	980	560	680	7,060
• Wind		20	25	0.300	50	3,390	770	660	500	5,370
		20	25	100	50	2,050	260	160	260	2,780
		20	30	10,000	40	1,090	70	100	140	1,440
		20	30	100,000	40	940	60	80	120	1,240
• PV-wind-hybrid		20	25	0.300	30	4,930	460	390	630	6,440
		20	30	100	130	3,680	640	450	520	5,420
 Solar Thermal With Storage 		30	50	30,000	920	1,920	400	1,150	460	4,850
Without Storage	è	30	20	30,000	550	890	200	600	240	2,480
Geothermal	Binary	20	70	200	450	4,350	750	1,670	-	7,220
	Binary	30	90	20,000	310	1,560	200	2,030	-	4,100
	Flash	30	90	50,000	180	955	125	1,250	-	2,510
Biomass Gasifie	r	20	80	100	70	2,490	120	70	130	2,880
		20	80	20,000	40	1,740	100	50	100	2,030
• Biomass Steam		20	80	50,000	90	1,290	170	70	80	1,700
• MSW/Landfill G	as	20	80	5,000	90	1,500	900	600	160	3,250
• Biogas		20	80	60	70	1,180	690	430	120	2,490
Pico/Micro Hydr	ſO	5	30	0.300	-	1,560	-	-	-	1,560
		15	30	1	-	1,970	570	140	-	2,680
		30	30	100	190	1,400	810	200	-	2,600
Mini-hydro		30	45	5,000	200	990	1,010	170	-	2,370
Large-hydro		40	50	100,000	200	560	1,180	200	-	2,140
Pumped Storage	Э	40	10	150,000	300	810	1,760	300	-	3,170

Table 25 2005 Renewable power technology capital cost (USD/kW)

Note: "-" means no cost needed.

Source: ESMAP (2007)

echnology	I	Rated Output kW	Levelized Capital Cost	Fixed O&M Costs	Variable O&M Costs	Fuel Costs	Average Levelized Cos
Solar-PV		0.050	45.59	3.00	13.00	-	61.59
		0.300	45.59	2.50	8.00	-	56.09
		25	42.93	1.50	7.00	-	51.43
		5,000	40.36	0.97	0.24	-	41.57
Wind		0.300	26.18	3.49	4.90	-	34.57
		100	13.55	2.08	4.08	-	19.71
		10,000	5.85	0.66	0.26	_	6.71
		100,000	5.08	0.53	0.22	-	5.79
PV-wind-hybrid	d	0.300	31.40	3.48	6.90	-	41.78
		100	22.02	2.07	6.40	-	30.49
Solar-thermal	With Storage	30,000	10.68	1.82	0.45	-	12.95
	Without Storage	e 30,000	13.65	3.01	0.75	-	17.41
Geothermal	Binary	200	12.57	2.00	1.00	-	15.57
	Binary	20,000	5.02	1.30	0.40	-	6.72
	Flash	50,000	3.07	0.90	0.30	-	4.27
Biomass Gasifier		100	4.39	0.34	1.57	2.66	8.96
		20,000	3.09	0.25	1.18	2.50	7.02
Biomass Steam		50,000	2.59	0.45	0.41	2.50	5.95
MSW/Landfill G	Sas	5,000	4.95	0.11	0.43	1.00	6.49
Biogas		60	3.79	0.34	1.54	1.10	6.77
Pico/Micro-hyd	ro	0.300	14.24	0.00	0.90	-	15.14
		1	12.19	0.00	0.54	-	12.73
		100	9.54	1.05	0.42	-	11.01
Mini-hydro		5,000	5.86	0.74	0.35	-	6.95
Large-hydro		100,000	4.56	0.50	0.32	-	5.38
Pumped Storag	ge	150,000	34.08	0.32	0.33	-	34.73

2005 Renewable power technology generating cost (USD/kWh)

Note: "-" means no cost needed.

Source: ESMAP (2007)

ANNEX B. REFERENCES AND BIBLIOGRAPHY

Agency for the Cooperation of Energy Regulators (ACER), 2015 Report on Unit Investment Cost Indicators, Electricity Infrastructure (version 1.1)
Alliance for Rural Electrification (ARE) Hybrid power systems based on renewable energies: a suitable and cost-competitive solution for rural electrification, Brochure
EnCON (2014) Feasibility Assessment for the Replacement of Diesel Water Pumps with Solar Water Pumps, Final Report, UNDP/GEF NAMREP project, Namibia
Energy Information Agency United States (EIA), 2016 Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2016
Energy Sector Management Assistance Program (ESMAP), 2015 Technical and Economic Assessment of Off-grid, Mini-grid and Grid Electrification Technologies, Technical Paper 131/07
Energy Sector Management Assistance Program (ESMAP), 2015 Beyond Connection, Energy Access Redefined, Conceptualization Report, World Bank
European Solar Thermal Industry Federation (ESTIF), 2014 Solar Heating and Cooling Technology Roadmap
 EU Technical Assistance Facility for the Sustainable Energy for All Initiative (TAF for SE4All) <i>Review of Modern Energy Supply Investment Costs</i> (2015), by EU TAF West and Central, Eastern and Southern Africa
 <i>Feasibility Assessment SEWA Solar Water Pumping</i> (2015), EU TAF Asia, Neighbourhood, Latin America, Caribbean and Pacific (ANLACP) <i>Sustainable Energy Handbook</i> (2015/16), by EU TAF Western and Central Africa
Geothermal Energy Association (GEA), 2014 The Status of Geothermal Power in Emerging Economies
Hannuksela, Juho Yli (2011) The Transmission Line Cost Calculation, University of Applied Sciences, Finland
Innovation, Energie, Développement (IED), 2013

Identifying the gaps and building the evidence base on low carbon mini-grids, Support Study for DFID on Green Mini-Grid Development

International Energy Agency (IEA), 2011 Technology Roadmap, Geothermal Heat and Power

International Energy Agency (IEA), 2014 Africa Energy Outlook International Energy Agency – Solar Heating and Cooling Programme (IEA-SHP), 2014 Solar Heat Worldwide: Market and Contribution to the Energy Supply 2013

International Energy Agency – World Energy Outlook (WEO, 2014) World Energy Outlook

International Institute for Sustainable Development (IISD), 2013 Biofuels – At what cost? Government support for ethanol and biodiesel in the European Union

International Renewable Energy Agency (IRENA), 2012

- Renewable Energy Technologies: Cost Analysis Series; Vol.1: Power Sector
- Issue 1/5 Biomass for Power Generation
- Issue 2/5 Concentrating Solar Power
- Issue 3/5 Hydropower
- Issue 4/5 Solar Photovoltaics
- Issue 5/5 Wind Power
- International Renewable Energy Agency (IRENA), 2012 Prospects for the African Power Market
- International Renewable Energy Agency (IRENA), 2013 Renewable Power Generation Costs in 2012
- International Renewable Energy Agency (IRENA), 2015 Renewable Power Generation Costs in 2014
- International Renewable Energy Agency (IRENA), 2015b Off-Grid Renewable Energy Systems
- International Renewable Energy Agency (IRENA), 2015c Renewable Desalination: Technology Options for Islands
- International Renewable Energy Agency (IRENA), 2016 Solar PV in Africa: Costs and Markets
- International Renewable Energy Agency (IRENA), 2016b Solar Pumping for Irrigation; Improving Livelihoods and Sustainability
- International Renewable Energy Agency (IRENA) International Energy Agency (IEA), 2013 Water Desalination Using Renewable Energy

International Renewable Energy Agency (IRENA) - International Energy Agency (IEA), 2015a Solar Heating and Cooling for Residential Applications, Technology Brief

- International Renewable Energy Agency (IRENA) International Energy Agency (IEA), 2015b Solar Heat for Industrial Processes, Technology Brief
- Intergovernmental Panel on Climate Change (IPCC, 2012) Special Report on Renewable Energy Sources and Climate Change Mitigation
- McKinsey and Co (2015)

Electric Power and Natural Gas: Brighter Africa, The Growth Potential of the Sub-Saharan Electricity Sector

ASCENDIS (2017)

NORPLAN (2012)

Policy Brief: Cost-benefit analysis of rural electrification

- Parsons Brinckerhoff (2012) Electricity Transmission Costing Study, United Kingdom
- Reiner Lemoine Institut (RLI), 2014 Global Market Potential for PV-based Mini-Grids in Developing Countries, Presentation by P. Berthau
- Renewable Energy Policy Network for the 21st Century (REN21), 2016 *Renewables 2016, Global Status Report*)

SNV (2014)

Renewable Energy for Smallholder Irrigation

- World Energy Council (2013), with Bloomberg New Energy Finance World Energy Perspective: Cost of Energy Technologies
- World Wind Energy Association (WWEA), 2015 Wind Energy 2050

For North found America, useful data technologies be on cost can at: http://en.openei.org/wiki/Transparent_Cost_Database. The Transparent Cost Database collects program cost and performance estimates for EERE technologies in a public forum where they can be viewed and compared to other published estimates. The database includes literature on technology cost, performance estimates and levelized costs (both current and future projections) for a) electricity generation, b) biofuels, and c) vehicles. All data are downloadable for full transparency in CSV or Excel spreadsheet. Data that can be downloaded are: LCOE, capital cost, fixed operating cost, variable operating cost and capacity factor.

Advisory Services on Climate, Energy and Development Issues

ASCENDIS is an independent office, founded in 2004 by Ir. Jan VAN DEN AKKER, a technology management scientist with a Master's degree from Eindhoven University of Technology (Netherlands), who has been working for almost 25 years in the area of clean technology, energy efficiency, renewable energy, energy access and climate change.

The acronym ASCENDIS stands for 'advisory services on climate, energy and development issues'. ASCENDIS specializes in strategic and practical advice on sustainable energy, covering areas like energy policy and strategies, rural energy, renewable energy, energy efficiency, sustainable transportation, biofuels, financing for energy, public-private partnerships, climate change mitigation and adaptation and climate funding and financing. ASCENDIS. offers services in Africa, Europe neighbourhood, Asia & Pacific and Latin America & Caribbean from offices in Netherlands (and as needed in Lima, Peru), to international development agencies and their local partners.

